Nanocontact vortex oscillators based on Co2MnGe pseudo spin valves

J'er'emy L'etang, C. de Melo, C. Guillemard, A. Vecchiola, D. Rontani, S. Petit-Watelot, Myoung-Woo Yoo, T. Devolder, K. Bouzehouane, V. Cros, S. Andrieu, Joo-Von Kim
{"title":"Nanocontact vortex oscillators based on \nCo2MnGe\n pseudo spin valves","authors":"J'er'emy L'etang, C. de Melo, C. Guillemard, A. Vecchiola, D. Rontani, S. Petit-Watelot, Myoung-Woo Yoo, T. Devolder, K. Bouzehouane, V. Cros, S. Andrieu, Joo-Von Kim","doi":"10.1103/PhysRevB.103.224424","DOIUrl":null,"url":null,"abstract":"We present an experimental study of vortex dynamics in magnetic nanocontacts based on pseudo spin valves comprising the Co$_2$MnGe Heusler compound. The films were grown by molecular beam epitaxy, where precise stoichiometry control and tailored stacking order allowed us to define the bottom ferromagnetic layer as the reference layer, with minimal coupling between the free and reference layers. 20-nm diameter nanocontacts were fabricated using a nano-indentation technique, leading to self-sustained gyration of the vortex generated by spin-transfer torques above a certain current threshold. By combining frequency- and time-domain measurements, we show that different types of spin-transfer induced dynamics related to different modes associated to the magnetic vortex configuration can be observed, such as mode hopping, mode coexistence and mode extinction appear in addition to the usual gyration mode.","PeriodicalId":8465,"journal":{"name":"arXiv: Mesoscale and Nanoscale Physics","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevB.103.224424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present an experimental study of vortex dynamics in magnetic nanocontacts based on pseudo spin valves comprising the Co$_2$MnGe Heusler compound. The films were grown by molecular beam epitaxy, where precise stoichiometry control and tailored stacking order allowed us to define the bottom ferromagnetic layer as the reference layer, with minimal coupling between the free and reference layers. 20-nm diameter nanocontacts were fabricated using a nano-indentation technique, leading to self-sustained gyration of the vortex generated by spin-transfer torques above a certain current threshold. By combining frequency- and time-domain measurements, we show that different types of spin-transfer induced dynamics related to different modes associated to the magnetic vortex configuration can be observed, such as mode hopping, mode coexistence and mode extinction appear in addition to the usual gyration mode.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Co2MnGe伪自旋阀的纳米接触涡振荡器
本文提出了一种基于Co$_2$MnGe Heusler化合物的伪自旋阀的磁纳米接触中涡旋动力学的实验研究。薄膜是通过分子束外延生长的,精确的化学计量控制和定制的堆叠顺序使我们能够将底部铁磁层定义为参考层,自由层和参考层之间的耦合最小。利用纳米压痕技术制备了直径20 nm的纳米触点,使自旋传递转矩超过一定电流阈值时产生的涡流能够自持续旋转。通过结合频域和时域测量,我们发现与磁涡旋构型相关的不同模式可以观察到不同类型的自旋转移诱导动力学,例如除了常见的旋转模式外,还出现模式跳变、模式共存和模式消光。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A driven fractal network: Possible route to efficient thermoelectric application Double Electron Spin Resonance of Engineered Atomic Structures on a Surface Reconfigurable Training, Vortex Writing and Spin-Wave Fingerprinting in an Artificial Spin-Vortex Ice Data mining, dashboards and statistics: a powerful framework for the chemical design of molecular nanomagnets Observation of electrically tunable Feshbach resonances in twisted bilayer semiconductors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1