An investigation of aerodynamic performance of aeroengine fan and booster under non-uniform inlet conditions

Q3 Earth and Planetary Sciences Aerospace Systems Pub Date : 2023-05-26 DOI:10.1007/s42401-023-00229-2
Zetian Qiu, Zhongyu Zhu, Xiaohua Liu
{"title":"An investigation of aerodynamic performance of aeroengine fan and booster under non-uniform inlet conditions","authors":"Zetian Qiu,&nbsp;Zhongyu Zhu,&nbsp;Xiaohua Liu","doi":"10.1007/s42401-023-00229-2","DOIUrl":null,"url":null,"abstract":"<div><p>Non-uniform inlet conditions have become increasingly important in recent years for simulating the aerodynamic performance of turbofan engine with real flight situations. This paper focuses on a particular fan and booster structure and employs frozen rotor interface method for 3D full-channel CFD simulation. Inlet distortion and rain ingestion are used as two representative non-uniform inlet conditions discussed in this work. It is found that the circumferential total pressure distortion develops along the flow direction, and leads to total temperature distortion. Additionally, the regulation of rain movement in fan and booster structures is investigated, and some factors about water inlet ratio impacting the performance of core engine and wet compression mechanism affecting the bypass performance are discussed.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Systems","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42401-023-00229-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Non-uniform inlet conditions have become increasingly important in recent years for simulating the aerodynamic performance of turbofan engine with real flight situations. This paper focuses on a particular fan and booster structure and employs frozen rotor interface method for 3D full-channel CFD simulation. Inlet distortion and rain ingestion are used as two representative non-uniform inlet conditions discussed in this work. It is found that the circumferential total pressure distortion develops along the flow direction, and leads to total temperature distortion. Additionally, the regulation of rain movement in fan and booster structures is investigated, and some factors about water inlet ratio impacting the performance of core engine and wet compression mechanism affecting the bypass performance are discussed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非均匀进气条件下航空发动机风扇和增压器空气动力性能的研究
近年来,非均匀进气道条件在模拟涡扇发动机实际飞行情况下的气动性能方面变得越来越重要。本文主要针对特定的风扇和助推器结构,采用冻结转子界面法进行三维全通道 CFD 仿真。进气道畸变和进雨是本文讨论的两种具有代表性的非均匀进气道条件。研究发现,圆周总压畸变沿流动方向发展,并导致总温畸变。此外,还研究了风扇和增压器结构中的雨水运动调节,并讨论了影响核心机性能的进水比和影响旁路性能的湿压缩机制等因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aerospace Systems
Aerospace Systems Social Sciences-Social Sciences (miscellaneous)
CiteScore
1.80
自引率
0.00%
发文量
53
期刊介绍: Aerospace Systems provides an international, peer-reviewed forum which focuses on system-level research and development regarding aeronautics and astronautics. The journal emphasizes the unique role and increasing importance of informatics on aerospace. It fills a gap in current publishing coverage from outer space vehicles to atmospheric vehicles by highlighting interdisciplinary science, technology and engineering. Potential topics include, but are not limited to: Trans-space vehicle systems design and integration Air vehicle systems Space vehicle systems Near-space vehicle systems Aerospace robotics and unmanned system Communication, navigation and surveillance Aerodynamics and aircraft design Dynamics and control Aerospace propulsion Avionics system Opto-electronic system Air traffic management Earth observation Deep space exploration Bionic micro-aircraft/spacecraft Intelligent sensing and Information fusion
期刊最新文献
Trajectory prediction for fighter aircraft ground collision avoidance based on the model predictive control technique Initial gap modeling for wing assembly analysis A survey on synthetic jets as active flow control Deconvolution of mode composition beamforming for rotating source localization Computational study on effect of free-stream turbulence on bio-inspired corrugated airfoil at different sections at low Reynolds number
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1