Development of Artificial Neural-Network-Based Models for the Simulation of Spring Discharge

M. M. Raju, R. Srivastava, D. Bisht, H. Sharma, Anil Kumar
{"title":"Development of Artificial Neural-Network-Based Models for the Simulation of Spring Discharge","authors":"M. M. Raju, R. Srivastava, D. Bisht, H. Sharma, Anil Kumar","doi":"10.1155/2011/686258","DOIUrl":null,"url":null,"abstract":"The present study demonstrates the application of artificial neural networks (ANNs) in predicting the weekly spring discharge. The study was based on the weekly spring discharge from a spring located near Ranichauri in Tehri Garhwal district of Uttarakhand, India. Five models were developed for predicting the spring discharge based on a weekly interval using rainfall, evaporation, temperature with a specified lag time. All models were developed both with one and two hidden layers. Each model was developed with many trials by selecting different network architectures and different number of hidden neurons; finally a best predicting model presented against each developed model. The models were trained with three different algorithms, that is, quick-propagation algorithm, batch backpropagation algorithm, and Levenberg-Marquardt algorithm using weekly data from 1999 to 2005. A best model for the simulation was selected from the three presented algorithms using the statistical criteria such as correlation coefficient (R), determination coefficient, orNash Sutcliff's efficiency (DC). Finally, optimized number of neurons were considered for the best model. Training and testing results revealed that the models were predicting the weekly spring discharge satisfactorily. Based on these criteria, ANN-based model results in better agreement for the computation of spring discharge. LMR models were also developed in the study, and they also gave good results, but, when compared with the ANN methodology, ANN resulted in better optimized values.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"8 1","pages":"686258:1-686258:11"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/686258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

The present study demonstrates the application of artificial neural networks (ANNs) in predicting the weekly spring discharge. The study was based on the weekly spring discharge from a spring located near Ranichauri in Tehri Garhwal district of Uttarakhand, India. Five models were developed for predicting the spring discharge based on a weekly interval using rainfall, evaporation, temperature with a specified lag time. All models were developed both with one and two hidden layers. Each model was developed with many trials by selecting different network architectures and different number of hidden neurons; finally a best predicting model presented against each developed model. The models were trained with three different algorithms, that is, quick-propagation algorithm, batch backpropagation algorithm, and Levenberg-Marquardt algorithm using weekly data from 1999 to 2005. A best model for the simulation was selected from the three presented algorithms using the statistical criteria such as correlation coefficient (R), determination coefficient, orNash Sutcliff's efficiency (DC). Finally, optimized number of neurons were considered for the best model. Training and testing results revealed that the models were predicting the weekly spring discharge satisfactorily. Based on these criteria, ANN-based model results in better agreement for the computation of spring discharge. LMR models were also developed in the study, and they also gave good results, but, when compared with the ANN methodology, ANN resulted in better optimized values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的弹簧放电仿真模型的建立
本研究展示了人工神经网络(ANNs)在春季周流量预测中的应用。这项研究是基于印度北阿坎德邦特赫里加尔瓦尔地区拉尼乔里附近一个泉水的每周流量。利用给定滞后时间的降雨量、蒸发量和温度,建立了以周为间隔预测春季流量的5个模型。所有的模型都有一个或两个隐藏层。通过选择不同的网络结构和不同数量的隐藏神经元,每个模型都经过多次试验;最后,针对各模型给出了最佳预测模型。采用快速传播算法、批量反向传播算法和Levenberg-Marquardt算法,采用1999 - 2005年的每周数据对模型进行训练。根据相关系数(R)、决定系数(determination coefficient)、纳什·萨特克利夫效率(nash Sutcliff’s efficiency, DC)等统计标准,从三种算法中选择最佳模型进行仿真。最后,考虑最优的神经元个数。训练和测试结果表明,该模型能较好地预测弹簧周流量。基于这些准则,基于人工神经网络的模型对弹簧流量的计算具有较好的一致性。研究中还开发了LMR模型,它们也给出了很好的结果,但与人工神经网络方法相比,人工神经网络方法得到了更好的优化值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
iWordNet: A New Approach to Cognitive Science and Artificial Intelligence Natural Language Processing and Fuzzy Tools for Business Processes in a Geolocation Context Method for Solving LASSO Problem Based on Multidimensional Weight Selection and Configuration of Sorption Isotherm Models in Soils Using Artificial Bees Guided by the Particle Swarm Weighted Constraint Satisfaction for Smart Home Automation and Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1