James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully, Bernhard Kragl, Seth Markle, Kyle Sauri, Drew Schleit, Grant Slatton, S. Tasiran, Jacob Van Geffen, A. Warfield
{"title":"Using Lightweight Formal Methods to Validate a Key-Value Storage Node in Amazon S3","authors":"James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully, Bernhard Kragl, Seth Markle, Kyle Sauri, Drew Schleit, Grant Slatton, S. Tasiran, Jacob Van Geffen, A. Warfield","doi":"10.1145/3477132.3483540","DOIUrl":null,"url":null,"abstract":"This paper reports our experience applying lightweight formal methods to validate the correctness of ShardStore, a new key-value storage node implementation for the Amazon S3 cloud object storage service. By \"lightweight formal methods\" we mean a pragmatic approach to verifying the correctness of a production storage node that is under ongoing feature development by a full-time engineering team. We do not aim to achieve full formal verification, but instead emphasize automation, usability, and the ability to continually ensure correctness as both software and its specification evolve over time. Our approach decomposes correctness into independent properties, each checked by the most appropriate tool, and develops executable reference models as specifications to be checked against the implementation. Our work has prevented 16 issues from reaching production, including subtle crash consistency and concurrency problems, and has been extended by non-formal-methods experts to check new features and properties as ShardStore has evolved.","PeriodicalId":38935,"journal":{"name":"Operating Systems Review (ACM)","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operating Systems Review (ACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3477132.3483540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 33
Abstract
This paper reports our experience applying lightweight formal methods to validate the correctness of ShardStore, a new key-value storage node implementation for the Amazon S3 cloud object storage service. By "lightweight formal methods" we mean a pragmatic approach to verifying the correctness of a production storage node that is under ongoing feature development by a full-time engineering team. We do not aim to achieve full formal verification, but instead emphasize automation, usability, and the ability to continually ensure correctness as both software and its specification evolve over time. Our approach decomposes correctness into independent properties, each checked by the most appropriate tool, and develops executable reference models as specifications to be checked against the implementation. Our work has prevented 16 issues from reaching production, including subtle crash consistency and concurrency problems, and has been extended by non-formal-methods experts to check new features and properties as ShardStore has evolved.
期刊介绍:
Operating Systems Review (OSR) is a publication of the ACM Special Interest Group on Operating Systems (SIGOPS), whose scope of interest includes: computer operating systems and architecture for multiprogramming, multiprocessing, and time sharing; resource management; evaluation and simulation; reliability, integrity, and security of data; communications among computing processors; and computer system modeling and analysis.