A high-dimensional test for the k-sample Behrens–Fisher problem

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Journal of Nonparametric Statistics Pub Date : 2022-11-21 DOI:10.1080/10485252.2022.2147172
Daojiang He, Huijun Shi, Kai Xu, M. Cao
{"title":"A high-dimensional test for the k-sample Behrens–Fisher problem","authors":"Daojiang He, Huijun Shi, Kai Xu, M. Cao","doi":"10.1080/10485252.2022.2147172","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of testing the equality of the mean vectors of k populations with possibly unknown and unequal covariance matrices is investigated in high-dimensional settings. The null distributions of most existing tests are asymptotically normal which inevitably imposes strong conditions on covariance matrices. However, we assume here only mild additional conditions on the proposed test, which offers much flexibility in practical applications. Additionally, the Welch–Satterthwaite -approximation we adopted can automatically mimic the shape of the null distribution of the proposed test statistic, while the normal approximation cannot achieve the adaptivity. Finally, an extensive simulation study shows that the proposed test has better performance on both size and power compared with existing methods.","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"29 1","pages":"239 - 265"},"PeriodicalIF":0.8000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonparametric Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10485252.2022.2147172","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the problem of testing the equality of the mean vectors of k populations with possibly unknown and unequal covariance matrices is investigated in high-dimensional settings. The null distributions of most existing tests are asymptotically normal which inevitably imposes strong conditions on covariance matrices. However, we assume here only mild additional conditions on the proposed test, which offers much flexibility in practical applications. Additionally, the Welch–Satterthwaite -approximation we adopted can automatically mimic the shape of the null distribution of the proposed test statistic, while the normal approximation cannot achieve the adaptivity. Finally, an extensive simulation study shows that the proposed test has better performance on both size and power compared with existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
k-样本Behrens-Fisher问题的高维检验
本文研究了在高维环境下,k个具有可能未知的不相等协方差矩阵的总体的均值向量是否相等的检验问题。大多数现有检验的零分布是渐近正态的,这不可避免地对协方差矩阵施加了很强的条件。然而,我们在这里假设只有轻微的附加条件,建议的测试,这在实际应用中提供了很大的灵活性。此外,我们采用的Welch-Satterthwaite近似可以自动模拟所提出的检验统计量的零分布形状,而正态近似不能实现自适应。最后,大量的仿真研究表明,与现有的测试方法相比,所提出的测试方法在尺寸和功耗方面都具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nonparametric Statistics
Journal of Nonparametric Statistics 数学-统计学与概率论
CiteScore
1.50
自引率
8.30%
发文量
42
审稿时长
6-12 weeks
期刊介绍: Journal of Nonparametric Statistics provides a medium for the publication of research and survey work in nonparametric statistics and related areas. The scope includes, but is not limited to the following topics: Nonparametric modeling, Nonparametric function estimation, Rank and other robust and distribution-free procedures, Resampling methods, Lack-of-fit testing, Multivariate analysis, Inference with high-dimensional data, Dimension reduction and variable selection, Methods for errors in variables, missing, censored, and other incomplete data structures, Inference of stochastic processes, Sample surveys, Time series analysis, Longitudinal and functional data analysis, Nonparametric Bayes methods and decision procedures, Semiparametric models and procedures, Statistical methods for imaging and tomography, Statistical inverse problems, Financial statistics and econometrics, Bioinformatics and comparative genomics, Statistical algorithms and machine learning. Both the theory and applications of nonparametric statistics are covered in the journal. Research applying nonparametric methods to medicine, engineering, technology, science and humanities is welcomed, provided the novelty and quality level are of the highest order. Authors are encouraged to submit supplementary technical arguments, computer code, data analysed in the paper or any additional information for online publication along with the published paper.
期刊最新文献
Adaptive and efficient isotonic estimation in Wicksell's problem A general semi-parametric elliptical distribution model for semi-supervised learning Stone's theorem for distributional regression in Wasserstein distance Kernel density estimation for a stochastic process with values in a Riemannian manifold Functional index coefficient models for locally stationary time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1