Understanding Prostate Cancer Cells Metabolome: A Spectroscopic Approach

Francisco Santos, S. Magalhães, M. Henriques, B. Silva, I. Valença, D. Ribeiro, M. Fardilha, A. Nunes
{"title":"Understanding Prostate Cancer Cells Metabolome: A Spectroscopic Approach","authors":"Francisco Santos, S. Magalhães, M. Henriques, B. Silva, I. Valença, D. Ribeiro, M. Fardilha, A. Nunes","doi":"10.2174/2213235X07666181122124106","DOIUrl":null,"url":null,"abstract":"Prostate cancer (PCa) is the second most common neoplasia in men. Because it is often diagnosed at a late stage, mortality rates remain high. Studying cancer metabolome, which reflects early changes that occur in cells, has gained relevance and may contribute to the identification of early diagnostic biomarkers and understanding tumor biology. Fourier-transform infrared (FTIR) spectroscopy is a metabolomics technique that probes the biochemical composition of the analyzed samples and allows to discriminate samples with distinct metabolic profiles, allowing the discrimination between cancerous and non-cancerous samples. In this study, FTIR spectra were acquired from PCa and normal prostate cell lines and analyzed by principal component analysis (PCA). Our results indicate a clear discrimination between the different cell lines, meaning that they exhibit distinct metabolic profiles. This discrimination can be attributed to an altered lipid metabolism (3000-2800 cm-1, 1800-1700 cm-1 and 15001400 cm-1) and changes in protein conformation (1700-1600 cm-1). These results suggest that studying cancer metabolome with FTIR spectroscopy not only allows the understanding of tumor metabolic behavior and may be useful to the development of new therapeutic targets.","PeriodicalId":10806,"journal":{"name":"Current Metabolomics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Metabolomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2213235X07666181122124106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Prostate cancer (PCa) is the second most common neoplasia in men. Because it is often diagnosed at a late stage, mortality rates remain high. Studying cancer metabolome, which reflects early changes that occur in cells, has gained relevance and may contribute to the identification of early diagnostic biomarkers and understanding tumor biology. Fourier-transform infrared (FTIR) spectroscopy is a metabolomics technique that probes the biochemical composition of the analyzed samples and allows to discriminate samples with distinct metabolic profiles, allowing the discrimination between cancerous and non-cancerous samples. In this study, FTIR spectra were acquired from PCa and normal prostate cell lines and analyzed by principal component analysis (PCA). Our results indicate a clear discrimination between the different cell lines, meaning that they exhibit distinct metabolic profiles. This discrimination can be attributed to an altered lipid metabolism (3000-2800 cm-1, 1800-1700 cm-1 and 15001400 cm-1) and changes in protein conformation (1700-1600 cm-1). These results suggest that studying cancer metabolome with FTIR spectroscopy not only allows the understanding of tumor metabolic behavior and may be useful to the development of new therapeutic targets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
了解前列腺癌细胞代谢组:一种光谱方法
前列腺癌(PCa)是男性第二常见的肿瘤。由于该病往往在晚期才被诊断出来,死亡率仍然很高。研究反映细胞早期变化的癌症代谢组已经获得了相关性,并可能有助于识别早期诊断生物标志物和了解肿瘤生物学。傅里叶变换红外(FTIR)光谱是一种代谢组学技术,它探测被分析样品的生化组成,并允许区分具有不同代谢谱的样品,从而区分癌变和非癌变样品。本研究采集了前列腺癌和正常前列腺细胞株的FTIR光谱,并用主成分分析(PCa)进行了分析。我们的结果表明不同细胞系之间存在明显的区别,这意味着它们表现出不同的代谢谱。这种区别可归因于脂质代谢的改变(3000-2800 cm-1、1800-1700 cm-1和15001400 cm-1)和蛋白质构象的改变(1700-1600 cm-1)。这些结果表明,利用FTIR光谱研究肿瘤代谢组不仅可以了解肿瘤的代谢行为,而且可能有助于开发新的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Understanding Prostate Cancer Cells Metabolome: A Spectroscopic Approach Genome-scale Metabolic Modelling for Succinic Acid Production in Escherichia coli Volatile Metabolomics with Focus on Fungal and Plant Applications - A Review Metabolite Profiling of Fruit and Seed Extracts of Garcinia Xanthochymus Using RP-HPLC-ESI-Q-TOF-MS and Progenesis QI Model-guided Metabolic Gene Knockout of pflA in Escherichia coli Increases Succinic Acid Production from Glycerol Carbon Source
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1