I. Made, Ari Nrartha, I. M. Ginarsa, A. B. Muljono, Sultan, Ida Ayu, Sri Adnyani, M. Bilad, M. Abid
{"title":"Improvement of Rooftop Solar Panels Efficiency using Maximum Power Point Tracking Based on an Adaptive Neural Network Fuzzy Inference System","authors":"I. Made, Ari Nrartha, I. M. Ginarsa, A. B. Muljono, Sultan, Ida Ayu, Sri Adnyani, M. Bilad, M. Abid","doi":"10.3844/ajeassp.2023.1.11","DOIUrl":null,"url":null,"abstract":": Rooftop solar panels are a strategy for achieving Indonesia's renewable energy goals, but their non-linear characteristics make them difficult to control, especially in the face of extreme weather changes. An effective controller is needed to optimize the power output of solar panels. This study proposes a Maximum Power Point Tracking (MPPT) controller based on an Adaptive Neural network Fuzzy Inference System (ANFIS) to address this control problem. The capacity of the rooftop solar panels is 3,430-Watt peak (Wp) and they are connected to a 220-Volt (V) grid system. The system is designed, simulated","PeriodicalId":7425,"journal":{"name":"American Journal of Engineering and Applied Sciences","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Engineering and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/ajeassp.2023.1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
: Rooftop solar panels are a strategy for achieving Indonesia's renewable energy goals, but their non-linear characteristics make them difficult to control, especially in the face of extreme weather changes. An effective controller is needed to optimize the power output of solar panels. This study proposes a Maximum Power Point Tracking (MPPT) controller based on an Adaptive Neural network Fuzzy Inference System (ANFIS) to address this control problem. The capacity of the rooftop solar panels is 3,430-Watt peak (Wp) and they are connected to a 220-Volt (V) grid system. The system is designed, simulated