Local Features Supported by the Complement Feature for Image Segmentation

S. Ameer
{"title":"Local Features Supported by the Complement Feature for Image Segmentation","authors":"S. Ameer","doi":"10.3844/ajeassp.2020.327.332","DOIUrl":null,"url":null,"abstract":"An Eigen formulation is proposed for image thresholding/segmentation. A vector composed of local features, normalized intensity of each pixel and that of the neighboring pixels, is used to represent each pixel. A “complement” component is appended to this vector to produce a “unit” vector. The auto-correlation matrix is computed for each pixel in the image using this unit vector. The first component (corresponding to the intensity of the current pixel) from all Eigen vectors, obtained from the auto-correlation matrix, are used as multi-level thresholds. Similar procedure can be adopted using powers of the current pixel intensity value. In general, more than one threshold can be obtained. Results on a wide range of images are demonstrated to show the effectiveness of the proposed schemes.","PeriodicalId":7425,"journal":{"name":"American Journal of Engineering and Applied Sciences","volume":"45 1","pages":"327-332"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Engineering and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/ajeassp.2020.327.332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An Eigen formulation is proposed for image thresholding/segmentation. A vector composed of local features, normalized intensity of each pixel and that of the neighboring pixels, is used to represent each pixel. A “complement” component is appended to this vector to produce a “unit” vector. The auto-correlation matrix is computed for each pixel in the image using this unit vector. The first component (corresponding to the intensity of the current pixel) from all Eigen vectors, obtained from the auto-correlation matrix, are used as multi-level thresholds. Similar procedure can be adopted using powers of the current pixel intensity value. In general, more than one threshold can be obtained. Results on a wide range of images are demonstrated to show the effectiveness of the proposed schemes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图像分割中补体特征支持的局部特征
提出了一种用于图像阈值分割的特征表达式。用一个由局部特征(每个像素的归一化强度和相邻像素的归一化强度)组成的向量来表示每个像素。一个“补”分量被附加到这个向量上,以产生一个“单位”向量。使用该单位向量计算图像中每个像素的自相关矩阵。从自相关矩阵中获得的所有特征向量中的第一个分量(对应于当前像素的强度)用作多级阈值。使用当前像素强度值的幂可以采用类似的程序。通常,可以获得多个阈值。在大范围的图像上证明了所提出方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integration of Cyber-Physical Systems, Digital Twins and 3D Printing in Advanced Manufacturing: A Synergistic Approach Optoelectronic Characterisation of Silicon and CIGS Photovoltaic Solar Cells Identification of the Presence of the "Swollen Shoot" Disease in Endemic Areas in Côte d'Ivoire Via Convolutional Neural Networks Bi-Stable Vibration Power Generation System Using Electromagnetic Motor and Efficiency Improvement by Stochastic Resonance A Classical Design Approach of Cascaded Controllers for a Traction Elevator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1