{"title":"Strong and osteoconductive poly(lactic acid) biocomposites by high-shear liquid dispersion of hydroxyapatite nanowhiskers","authors":"Dong-mei Zhou, Meng-Han Shen, Lv Ke, Ziwen Zhang, Kaiwen Zhang, Shenghui Zhang, Yanqing Wang, Haoran Yang, Dao-Min Tang, Donghui Huang, Jin-Kui Yang, Huan Xu","doi":"10.1080/20550324.2022.2054212","DOIUrl":null,"url":null,"abstract":"Abstract Controlled incorporation of bioactive hydroxyapatite (HA) into poly(lactic acid) (PLA) signifies a promising approach to design and development of biomedical-adaptive materials. Here we unravel a microwave-assisted biomineralization approach to synthesis of HA nanowhiskers (HANWs), which were characterized by well-controlled diameter (∼30 nm) and length (80 − 120 nm), combined with a desirable calcium − phosphorus ratio (Ca/P) of 1.67. A high-shear liquid dispersion (HSLD) method that provided a combination of high pressure (up to 50 kPa) and high shear rate approaching 10000 s −1 was established to fabricate homogeneous PLA/HANWs composites. In particular, upon incorporation of 30 wt % HANWs the tensile strength and elastic modulus of PLA-HA30 (76.7 MPa and 3.3 GPa) were elevated by 48% and 84% compared to those of pure PLA, respectively, as accompanied by a nearly 2-fold increase in the cell viability. This work paves a facile yet effective roadway to strong and osteoconductive PLA composites appealing for bone tissue repairing. Graphical Abstract Synopsis: Biomineralization concepts are abstracted to synthesize well-defined and bioactive HANWs, which could be uniformly dispersed in PLA biofilms by high-shear liquid exfoliation.","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":"31 1","pages":"24 - 33"},"PeriodicalIF":4.2000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanocomposites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/20550324.2022.2054212","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract Controlled incorporation of bioactive hydroxyapatite (HA) into poly(lactic acid) (PLA) signifies a promising approach to design and development of biomedical-adaptive materials. Here we unravel a microwave-assisted biomineralization approach to synthesis of HA nanowhiskers (HANWs), which were characterized by well-controlled diameter (∼30 nm) and length (80 − 120 nm), combined with a desirable calcium − phosphorus ratio (Ca/P) of 1.67. A high-shear liquid dispersion (HSLD) method that provided a combination of high pressure (up to 50 kPa) and high shear rate approaching 10000 s −1 was established to fabricate homogeneous PLA/HANWs composites. In particular, upon incorporation of 30 wt % HANWs the tensile strength and elastic modulus of PLA-HA30 (76.7 MPa and 3.3 GPa) were elevated by 48% and 84% compared to those of pure PLA, respectively, as accompanied by a nearly 2-fold increase in the cell viability. This work paves a facile yet effective roadway to strong and osteoconductive PLA composites appealing for bone tissue repairing. Graphical Abstract Synopsis: Biomineralization concepts are abstracted to synthesize well-defined and bioactive HANWs, which could be uniformly dispersed in PLA biofilms by high-shear liquid exfoliation.