A Transfer Learning-Based Multi-Fidelity Point-Cloud Neural Network Approach for Melt Pool Modeling in Additive Manufacturing

Xufeng Huang, Tingli Xie, Zhuo Wang, Lei Chen, Qi Zhou, Zhen Hu
{"title":"A Transfer Learning-Based Multi-Fidelity Point-Cloud Neural Network Approach for Melt Pool Modeling in Additive Manufacturing","authors":"Xufeng Huang, Tingli Xie, Zhuo Wang, Lei Chen, Qi Zhou, Zhen Hu","doi":"10.1115/1.4051749","DOIUrl":null,"url":null,"abstract":"\n Melt pool modeling is critical for model-based uncertainty quantification (UQ) and quality control in metallic additive manufacturing (AM). Finite element (FE) simulation for thermal modeling in metal AM, however, is tedious and time-consuming. This paper presents a multifidelity point-cloud neural network method (MF-PointNN) for surrogate modeling of melt pool based on FE simulation data. It merges the feature representations of the low-fidelity (LF) analytical model and high-fidelity (HF) FE simulation data through the theory of transfer learning (TL). A basic PointNN is first trained using LF data to construct a correlation between the inputs and thermal field of analytical models. Then, the basic PointNN is updated and fine-tuned using the small size of HF data to build the MF-PointNN. The trained MF-PointNN allows for efficient mapping from input variables and spatial positions to thermal histories, and thereby efficiently predicts the three-dimensional melt pool. Results of melt pool modeling of electron beam additive manufacturing (EBAM) of Ti-6Al-4V under uncertainty demonstrate the efficacy of the proposed approach.","PeriodicalId":44694,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","volume":"10 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4051749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 13

Abstract

Melt pool modeling is critical for model-based uncertainty quantification (UQ) and quality control in metallic additive manufacturing (AM). Finite element (FE) simulation for thermal modeling in metal AM, however, is tedious and time-consuming. This paper presents a multifidelity point-cloud neural network method (MF-PointNN) for surrogate modeling of melt pool based on FE simulation data. It merges the feature representations of the low-fidelity (LF) analytical model and high-fidelity (HF) FE simulation data through the theory of transfer learning (TL). A basic PointNN is first trained using LF data to construct a correlation between the inputs and thermal field of analytical models. Then, the basic PointNN is updated and fine-tuned using the small size of HF data to build the MF-PointNN. The trained MF-PointNN allows for efficient mapping from input variables and spatial positions to thermal histories, and thereby efficiently predicts the three-dimensional melt pool. Results of melt pool modeling of electron beam additive manufacturing (EBAM) of Ti-6Al-4V under uncertainty demonstrate the efficacy of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于迁移学习的多保真点云神经网络增材制造熔池建模方法
在金属增材制造(AM)中,熔池建模对于基于模型的不确定性量化(UQ)和质量控制至关重要。然而,金属增材制造热建模的有限元模拟繁琐且耗时。提出了一种基于有限元模拟数据的多保真点云神经网络(MF-PointNN)替代建模方法。通过迁移学习理论,将低保真(LF)分析模型和高保真(HF) FE仿真数据的特征表示进行融合。首先使用LF数据训练基本的PointNN,以构建分析模型的输入与热场之间的相关性。然后,利用少量高频数据对基本点网络进行更新和微调,构建mf -点网络。经过训练的MF-PointNN允许从输入变量和空间位置到热历史的有效映射,从而有效地预测三维熔池。不确定条件下Ti-6Al-4V电子束增材制造(EBAM)的熔池建模结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
13.60%
发文量
34
期刊最新文献
Verification and Validation of Rotating Machinery Using Digital Twin Risk Approach Based On the Fram Model for Vessel Traffic Management A Fault Detection Framework Based On Data-driven Digital Shadows Domain Adaptation Of Population-Based Of Bolted Joint Structures For Loss Detection Of Tightening Torque Human-Comfort Evaluation for A Patient-Transfer Robot through A Human-Robot Mechanical Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1