{"title":"Precipitation prediction based on CEEMDAN–VMD–BILSTM combined quadratic decomposition model","authors":"Xianqi Zhang, Jingwen Shi, Haiyang Chen, Yimeng Xiao, Minghui Zhang","doi":"10.2166/ws.2023.212","DOIUrl":null,"url":null,"abstract":"\n \n Accurate prediction of monthly precipitation is crucial for effective regional water resources management and utilization. However, precipitation series are influenced by multiple factors, exhibiting significant ambiguity, chance, and uncertainty. In this research, we propose a combined model that integrates adaptive noise-complete ensemble empirical mode decomposition (CEEMDAN), variational modal decomposition method (VMD), and bidirectional long- and short-term memory (BILSTM) to enhance precipitation prediction. We apply this model to forecast precipitation in Fuzhou City and compare its performance with existing models, including CEEMD–long and short-term memory (LSTM), CEEMD–BILSTM, and CEEMDAN–BILSTM. Our findings demonstrate that the combined CEEMDAN–VMD–BILSTM quadratic decomposition model yields more accurate predictions and captures the real variation in precipitation series with greater fidelity. The model achieves an average relative error of 1.69%, at a lower level, and an average absolute error of 1.32 m, with a Nash–Sutcliffe efficiency coefficient of 0.92. Overall, the proposed quadratic decomposition model exhibits excellent applicability, stability, and superior predictive capabilities in monthly precipitation forecasting.","PeriodicalId":17553,"journal":{"name":"Journal of Water Supply Research and Technology-aqua","volume":"136 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply Research and Technology-aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2023.212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate prediction of monthly precipitation is crucial for effective regional water resources management and utilization. However, precipitation series are influenced by multiple factors, exhibiting significant ambiguity, chance, and uncertainty. In this research, we propose a combined model that integrates adaptive noise-complete ensemble empirical mode decomposition (CEEMDAN), variational modal decomposition method (VMD), and bidirectional long- and short-term memory (BILSTM) to enhance precipitation prediction. We apply this model to forecast precipitation in Fuzhou City and compare its performance with existing models, including CEEMD–long and short-term memory (LSTM), CEEMD–BILSTM, and CEEMDAN–BILSTM. Our findings demonstrate that the combined CEEMDAN–VMD–BILSTM quadratic decomposition model yields more accurate predictions and captures the real variation in precipitation series with greater fidelity. The model achieves an average relative error of 1.69%, at a lower level, and an average absolute error of 1.32 m, with a Nash–Sutcliffe efficiency coefficient of 0.92. Overall, the proposed quadratic decomposition model exhibits excellent applicability, stability, and superior predictive capabilities in monthly precipitation forecasting.
月降水量的准确预报对区域水资源的有效管理和利用至关重要。降水序列受多种因素的影响,具有明显的模糊性、偶然性和不确定性。本研究提出了一种结合自适应噪声完全系综经验模态分解(CEEMDAN)、变分模态分解(VMD)和双向长短期记忆(BILSTM)的组合模型来增强降水预测。将该模型应用于福州地区的降水预报,并与现有模型(ceemd -长短期记忆(LSTM)、CEEMD-BILSTM和CEEMDAN-BILSTM)进行了比较。我们的研究结果表明,CEEMDAN-VMD-BILSTM组合二次分解模型可以更准确地预测降水序列的真实变化,并且具有更高的保真度。模型在较低水平上的平均相对误差为1.69%,平均绝对误差为1.32 m, Nash-Sutcliffe效率系数为0.92。总体而言,本文提出的二次分解模型在月降水预报中具有良好的适用性、稳定性和较强的预测能力。
期刊介绍:
Journal of Water Supply: Research and Technology - Aqua publishes peer-reviewed scientific & technical, review, and practical/ operational papers dealing with research and development in water supply technology and management, including economics, training and public relations on a national and international level.