{"title":"A knowledge-based dynamic job-scheduling in low-volume/high-variety manufacturing","authors":"Yaoxue Zhang, Hua Chen","doi":"10.1016/S0954-1810(98)00014-4","DOIUrl":null,"url":null,"abstract":"<div><p>One of the most important issues in computer integrated manufacturing systems is job scheduling. Though many scheduling criteria for job scheduling have been proposed, most of them are impractical for application in the low-volume/high-variety manufacturing environment. This paper reports the development of a knowledge-based dynamic job-scheduling system in the low-volume/high-variety manufacturing environment. The system provides us with a practical facility for job scheduling which takes into account the influence of many factors such as machine setup times, cell changes, replacement machines and load balancing among machines. The system is based on a set of heuristic algorithms and intranet technology. It has been found that the knowledge-based paradigm and the intranet technology are very useful for complex scheduling problems in low-volume/high-variety manufacturing cases.</p></div>","PeriodicalId":100123,"journal":{"name":"Artificial Intelligence in Engineering","volume":"13 3","pages":"Pages 241-249"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0954-1810(98)00014-4","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0954181098000144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
One of the most important issues in computer integrated manufacturing systems is job scheduling. Though many scheduling criteria for job scheduling have been proposed, most of them are impractical for application in the low-volume/high-variety manufacturing environment. This paper reports the development of a knowledge-based dynamic job-scheduling system in the low-volume/high-variety manufacturing environment. The system provides us with a practical facility for job scheduling which takes into account the influence of many factors such as machine setup times, cell changes, replacement machines and load balancing among machines. The system is based on a set of heuristic algorithms and intranet technology. It has been found that the knowledge-based paradigm and the intranet technology are very useful for complex scheduling problems in low-volume/high-variety manufacturing cases.