Meta-silencer with designable timbre

IF 16.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING International Journal of Extreme Manufacturing Pub Date : 2023-03-06 DOI:10.1088/2631-7990/acbd6d
Nengyin Wang, Chengcheng Zhou, Sheng Qiu, Sibo Huang, Bin Jia, Shanshan Liu, Junmei Cao, Zhiling Zhou, Hua Ding, Jie Zhu, Yong Li
{"title":"Meta-silencer with designable timbre","authors":"Nengyin Wang, Chengcheng Zhou, Sheng Qiu, Sibo Huang, Bin Jia, Shanshan Liu, Junmei Cao, Zhiling Zhou, Hua Ding, Jie Zhu, Yong Li","doi":"10.1088/2631-7990/acbd6d","DOIUrl":null,"url":null,"abstract":"Timbre, as one of the essential elements of sound, plays an important role in determining sound properties, whereas its manipulation has been remaining challenging for passive mechanical systems due to the intrinsic dispersion nature of resonances. Here, we present a meta-silencer supporting intensive mode density as well as highly tunable intrinsic loss and offering a fresh pathway for designable timbre in broadband. Strong global coupling is induced by intensive mode density and delicately modulated with the guidance of the theoretical model, which efficiently suppresses the resonance dispersion and provides desirable frequency-selective wave-manipulation capacity for timbre tuning. As proof-of-concept demonstrations for our design concepts, we propose three meta-silencers with the designing targets of high-efficiency broadband sound attenuation, efficiency-controlled sound attenuation and designable timbre, respectively. The proposed meta-silencers all operate in a broadband frequency range from 500 to 3200 Hz and feature deep-subwavelength sizes around 50 mm. Our work opens up a fundamental avenue to manipulate the timbre with passive resonances-controlled acoustic metamaterials and may inspire the development of novel multifunctional devices in noise-control engineering, impedance engineering, and architectural acoustics.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"38 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/acbd6d","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 6

Abstract

Timbre, as one of the essential elements of sound, plays an important role in determining sound properties, whereas its manipulation has been remaining challenging for passive mechanical systems due to the intrinsic dispersion nature of resonances. Here, we present a meta-silencer supporting intensive mode density as well as highly tunable intrinsic loss and offering a fresh pathway for designable timbre in broadband. Strong global coupling is induced by intensive mode density and delicately modulated with the guidance of the theoretical model, which efficiently suppresses the resonance dispersion and provides desirable frequency-selective wave-manipulation capacity for timbre tuning. As proof-of-concept demonstrations for our design concepts, we propose three meta-silencers with the designing targets of high-efficiency broadband sound attenuation, efficiency-controlled sound attenuation and designable timbre, respectively. The proposed meta-silencers all operate in a broadband frequency range from 500 to 3200 Hz and feature deep-subwavelength sizes around 50 mm. Our work opens up a fundamental avenue to manipulate the timbre with passive resonances-controlled acoustic metamaterials and may inspire the development of novel multifunctional devices in noise-control engineering, impedance engineering, and architectural acoustics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有可设计音色的元消声器
音色作为声音的基本元素之一,在决定声音特性方面起着重要作用,然而由于共振固有的色散性质,对被动机械系统来说,音色的操纵仍然具有挑战性。在这里,我们提出了一种支持密集模式密度和高度可调的固有损耗的元消声器,并为宽带中可设计的音色提供了新的途径。强全局耦合是由强模密度引起的,并在理论模型的指导下进行精细调制,有效地抑制了共振色散,并为音色调谐提供了理想的频率选择性波操纵能力。作为我们设计概念的概念验证,我们提出了三种元消声器,其设计目标分别是高效宽带声衰减、效率控制声衰减和可设计音色。所提出的元消声器都在500至3200hz的宽带频率范围内工作,其深亚波长尺寸约为50mm。我们的工作开辟了一条利用被动共振控制声学超材料来操纵音色的基本途径,并可能激发在噪声控制工程、阻抗工程和建筑声学中新型多功能设备的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Extreme Manufacturing
International Journal of Extreme Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
17.70
自引率
6.10%
发文量
83
审稿时长
12 weeks
期刊介绍: The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.
期刊最新文献
Advancements in 3D skin bioprinting: processes, bioinks, applications and sensor integration. Additively manufactured Ti-Ta-Cu alloys for the next-generation load-bearing implants. A novel approach of jet polishing for interior surface of small grooved components using three developed setups Elliptical vibration chiseling: a novel process for texturing ultra-high-aspect-ratio microstructures on the metallic surface Printability disparities in heterogeneous material combinations via laser directed energy deposition: a comparative study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1