Optimized mirror cleaning strategies in PTC plants reducing the water consumption and the levelized cost of cleaning

S. Rohani, Nada Abdelnabi, T. Fluri, A. Heimsath, C. Wittwer, Javier García Pérez Ainsua
{"title":"Optimized mirror cleaning strategies in PTC plants reducing the water consumption and the levelized cost of cleaning","authors":"S. Rohani, Nada Abdelnabi, T. Fluri, A. Heimsath, C. Wittwer, Javier García Pérez Ainsua","doi":"10.1063/1.5117763","DOIUrl":null,"url":null,"abstract":"Soiling reduces the optical efficiency of the reflectors in a CSP plant and thus has a negative effect on the plant power output and LCOE. To mitigate this effect, regular cleaning should be performed which in turn increases the operation cost and consumes large amounts of water. In this study, potential improved cleaning strategies were tested through detailed dynamic simulation with an attempt to realize the relation between the cleaning water consumption and the specific cost of cleaning as well as to identify the optimum cleaning strategy for a specific site answering the question when and which collector should be cleaned. The aim of the study is to evaluate different cleaning strategies through a CSP performance model which is able to simulate the behavior of a CSP plant as close as possible to the real conditions. For this reason, spatiotemporal distribution of cleanliness in the solar field and individual loop simulation were taken into account in order to consider the effect of the non-homogenous cleanliness on the outlet temperature of the solar field. Additionally, the cleaning processes have been modelled based on the characteristics of ECILIMP cleaning trucks obtained from several on-site and laboratory scale tests. The simulation results show that the proposed cleaning strategy with variable threshold can reduce the cleaning water consumption by up to 19% and reduce the levelized cost of cleaning by 25% without any negative effect on the plant performance.","PeriodicalId":21790,"journal":{"name":"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5117763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Soiling reduces the optical efficiency of the reflectors in a CSP plant and thus has a negative effect on the plant power output and LCOE. To mitigate this effect, regular cleaning should be performed which in turn increases the operation cost and consumes large amounts of water. In this study, potential improved cleaning strategies were tested through detailed dynamic simulation with an attempt to realize the relation between the cleaning water consumption and the specific cost of cleaning as well as to identify the optimum cleaning strategy for a specific site answering the question when and which collector should be cleaned. The aim of the study is to evaluate different cleaning strategies through a CSP performance model which is able to simulate the behavior of a CSP plant as close as possible to the real conditions. For this reason, spatiotemporal distribution of cleanliness in the solar field and individual loop simulation were taken into account in order to consider the effect of the non-homogenous cleanliness on the outlet temperature of the solar field. Additionally, the cleaning processes have been modelled based on the characteristics of ECILIMP cleaning trucks obtained from several on-site and laboratory scale tests. The simulation results show that the proposed cleaning strategy with variable threshold can reduce the cleaning water consumption by up to 19% and reduce the levelized cost of cleaning by 25% without any negative effect on the plant performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化了PTC工厂的镜面清洗策略,减少了水的消耗,降低了清洗成本
污染降低了CSP工厂中反射器的光学效率,从而对工厂功率输出和LCOE产生负面影响。为了减轻这种影响,应定期进行清洁,这反过来又增加了操作成本并消耗了大量的水。在本研究中,通过详细的动态模拟测试了潜在的改进清洗策略,试图实现清洗用水量与特定清洗成本之间的关系,并确定特定场地的最佳清洗策略,回答何时和哪个收集器应该清洗的问题。该研究的目的是通过CSP性能模型来评估不同的清洁策略,该模型能够模拟CSP工厂尽可能接近真实条件的行为。为此,为了考虑非均匀清洁度对太阳场出口温度的影响,我们考虑了太阳场清洁度的时空分布和单个环路模拟。此外,根据几次现场和实验室规模试验获得的ECILIMP清洁卡车的特性,对清洁过程进行了建模。仿真结果表明,所提出的变阈值清洗策略可减少高达19%的清洗用水量和25%的清洗平准化成本,而不会对工厂性能产生负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-accuracy real-time monitoring of solar radiation attenuation in commercial solar towers Optical and thermal performance of a novel solar particle receiver The fluidized bed air heat exchanger in a hybrid Brayton-cycle solar power plant “MOSAIC”, A new CSP plant concept for the highest concentration ratios at the lowest cost Value contribution of solar plants to the Chilean electric system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1