Katherine Mitchell, H. Horner, A. Resnick, Jungkyu Park, E. Farfán, T. Yee, A. Hummel
{"title":"Thermal Transport in Actinide Oxide Fuels With Interstitial Defects","authors":"Katherine Mitchell, H. Horner, A. Resnick, Jungkyu Park, E. Farfán, T. Yee, A. Hummel","doi":"10.1115/IMECE2019-11027","DOIUrl":null,"url":null,"abstract":"\n Molecular displacement occurs in the oxide fuels of nuclear reactors during operation. This causes several types of point defects to be generated inside the oxide nuclear fuels. To improve the safety and efficiency of nuclear reactor operation, it is necessary to better understand the effects of point defects on the properties of the oxide fuels. In this study, we examine the effects of interstitial defects on thermal transport in two representative actinide oxides used in modern reactors (UO2, and PuO2). Reverse non-equilibrium molecular dynamics (RNEMD) is employed to approximate the thermal conductivities for the aforementioned fuels at several sample lengths and at defect concentrations of 0.1%, 1%, and 5%. The results show that alterations to the lattice structures of these fuels reduce their thermal conductivities significantly. For example, oxygen interstitial defects at concentrations even as low as 0.1% decreased thermal conductivity by 20% at 100 units for each fuel.","PeriodicalId":23629,"journal":{"name":"Volume 6: Energy","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6: Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2019-11027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular displacement occurs in the oxide fuels of nuclear reactors during operation. This causes several types of point defects to be generated inside the oxide nuclear fuels. To improve the safety and efficiency of nuclear reactor operation, it is necessary to better understand the effects of point defects on the properties of the oxide fuels. In this study, we examine the effects of interstitial defects on thermal transport in two representative actinide oxides used in modern reactors (UO2, and PuO2). Reverse non-equilibrium molecular dynamics (RNEMD) is employed to approximate the thermal conductivities for the aforementioned fuels at several sample lengths and at defect concentrations of 0.1%, 1%, and 5%. The results show that alterations to the lattice structures of these fuels reduce their thermal conductivities significantly. For example, oxygen interstitial defects at concentrations even as low as 0.1% decreased thermal conductivity by 20% at 100 units for each fuel.