Traffic-Sign Detection and Classification in the Wild

Zhe Zhu, Dun Liang, Song-Hai Zhang, Xiaolei Huang, Baoli Li, Shimin Hu
{"title":"Traffic-Sign Detection and Classification in the Wild","authors":"Zhe Zhu, Dun Liang, Song-Hai Zhang, Xiaolei Huang, Baoli Li, Shimin Hu","doi":"10.1109/CVPR.2016.232","DOIUrl":null,"url":null,"abstract":"Although promising results have been achieved in the areas of traffic-sign detection and classification, few works have provided simultaneous solutions to these two tasks for realistic real world images. We make two contributions to this problem. Firstly, we have created a large traffic-sign benchmark from 100000 Tencent Street View panoramas, going beyond previous benchmarks. It provides 100000 images containing 30000 traffic-sign instances. These images cover large variations in illuminance and weather conditions. Each traffic-sign in the benchmark is annotated with a class label, its bounding box and pixel mask. We call this benchmark Tsinghua-Tencent 100K. Secondly, we demonstrate how a robust end-to-end convolutional neural network (CNN) can simultaneously detect and classify trafficsigns. Most previous CNN image processing solutions target objects that occupy a large proportion of an image, and such networks do not work well for target objects occupying only a small fraction of an image like the traffic-signs here. Experimental results show the robustness of our network and its superiority to alternatives. The benchmark, source code and the CNN model introduced in this paper is publicly available1.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"89 1","pages":"2110-2118"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"567","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 567

Abstract

Although promising results have been achieved in the areas of traffic-sign detection and classification, few works have provided simultaneous solutions to these two tasks for realistic real world images. We make two contributions to this problem. Firstly, we have created a large traffic-sign benchmark from 100000 Tencent Street View panoramas, going beyond previous benchmarks. It provides 100000 images containing 30000 traffic-sign instances. These images cover large variations in illuminance and weather conditions. Each traffic-sign in the benchmark is annotated with a class label, its bounding box and pixel mask. We call this benchmark Tsinghua-Tencent 100K. Secondly, we demonstrate how a robust end-to-end convolutional neural network (CNN) can simultaneously detect and classify trafficsigns. Most previous CNN image processing solutions target objects that occupy a large proportion of an image, and such networks do not work well for target objects occupying only a small fraction of an image like the traffic-signs here. Experimental results show the robustness of our network and its superiority to alternatives. The benchmark, source code and the CNN model introduced in this paper is publicly available1.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
野外交通标志检测与分类
尽管在交通标志检测和分类领域已经取得了可喜的成果,但很少有作品能够同时解决这两项任务,并提供真实的现实世界图像。我们对这个问题有两个贡献。首先,我们从10万张腾讯街景全景图中创建了一个大型交通标志基准,超越了之前的基准。它提供100000张包含30000个交通标志实例的图像。这些图像涵盖了光照和天气条件的巨大变化。基准测试中的每个交通标志都用一个类标签、它的边界框和像素掩码进行注释。我们称之为清华-腾讯100K基准。其次,我们展示了鲁棒的端到端卷积神经网络(CNN)如何同时检测和分类交通标志。之前大多数CNN图像处理方案都是针对图像中占很大比例的目标,这种网络对于只占图像一小部分的目标(比如这里的交通标志)效果并不好。实验结果表明了该网络的鲁棒性和优越性。本文中引入的基准测试、源代码和CNN模型都是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sketch Me That Shoe Multivariate Regression on the Grassmannian for Predicting Novel Domains How Hard Can It Be? Estimating the Difficulty of Visual Search in an Image Discovering the Physical Parts of an Articulated Object Class from Multiple Videos Simultaneous Optical Flow and Intensity Estimation from an Event Camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1