The densities of Baltic Sea waters

Frank J. Millero , Klaus Kremling
{"title":"The densities of Baltic Sea waters","authors":"Frank J. Millero ,&nbsp;Klaus Kremling","doi":"10.1016/0011-7471(76)90889-5","DOIUrl":null,"url":null,"abstract":"<div><p>The relative densities of Baltic Sea waters have been measured from 3.5 to 20‰ salinity and 0.36 to 20°C with a vibrating densimeter. The directly measured densities were compared with those determined from the seawater equation of state (<span>Millero, Gonzalez</span> and <span>Ward</span>, <em>Journal of Marine Research</em>, <strong>34</strong>, 691–693, 1976) at the same true salinity given by <span><math><mtext>S(‰)</mtext><msub><mi></mi><mn>T</mn></msub><mtext> = a + bS(‰)</mtext></math></span>, where <em>a</em> is related to the river water input of dissolved solids, <span><math><mtext>b = (35.171-a)/35.000 </mtext><mtext>and</mtext><mtext> S(‰) = 1.00566 </mtext><mtext>Cl</mtext><mtext>(‰)</mtext></math></span>. By adjusting <em>a</em> to 0.123±0.005 g kg<sup>−1</sup> the differences between the directly measured and calculated densities had a minimum standard deviation of 8.7 × 1-<sup>−6</sup> g cm<sup>−3</sup>. The value of <em>a</em> determined from the density data is excellent agreement with the value (0.121 ± 0.019 g kg<sup>−1</sup>) determined from the composition of these same samples (<span>Kremling</span>, 1969, <em>Kieler</em><em>Meeresforschungen</em>, <strong>24</strong>, 1–20, 1970; <em>Deep-Sea Research</em>, <strong>19</strong>, 377–383, 1972b). the measured densities have been fitted by at least squares method to the equation: <span><math><mtext>d = d</mtext><msup><mi></mi><mn>0</mn></msup><mtext> + AS(‰)</mtext><msub><mi></mi><mn>T</mn></msub><mtext> + BS(‰)</mtext><msub><mi></mi><mn>T</mn></msub><msup><mi></mi><mn><mtext>sol;2</mtext><mtext>3</mtext></mn></msup></math></span>, where <em>d</em><sup>0</sup> is the density of pure water (<span>Kell</span>, <em>Journal of Chemical and Engineering Data</em>, <strong>12</strong>, 66–69, 1976), <em>A</em> and <em>B</em> are temperature dependent parameters. The densities fit this equation to a standard deviation of 7.1 × 10<sup>−6</sup> g cm<sup>−3</sup>. The smoothed densities are in good agreement (± 6ppm) with the results of <span>Knudsen</span><em>et al.</em> (<em>Kongelige Danske</em><em>Videnskabernes Selskabs</em>, <strong>1</strong>, 1–151, 1902) providing the comparisons are made at the true salinity. These results demonstrate that the densities of a natural estuary are equal (within experimental error) to those of seawater diluted with pure water when compared at the same total dissolved solid concentration, which is in agreement with theoretical calculations (<span>Millero</span>, <em>Marine chemistry in the coastal environment</em>. A.C.S. Symposium Series Vol. 18, pp. 25–55, 1975) and measurements on an artificial estuary (<span>Millero, Lawson</span> and <span>Gonzalez</span>, <em>Journal of Geophysical Research</em>, <strong>18</strong>, 1177–1179). The physical chemical properties of the Baltic or any estuary can thus be determined from those of seawater diluted with pure water by using only the river input of total solids (<em>a</em>).</p></div>","PeriodicalId":11253,"journal":{"name":"Deep Sea Research and Oceanographic Abstracts","volume":"23 12","pages":"Pages 1129-1138"},"PeriodicalIF":0.0000,"publicationDate":"1976-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0011-7471(76)90889-5","citationCount":"65","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep Sea Research and Oceanographic Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0011747176908895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

Abstract

The relative densities of Baltic Sea waters have been measured from 3.5 to 20‰ salinity and 0.36 to 20°C with a vibrating densimeter. The directly measured densities were compared with those determined from the seawater equation of state (Millero, Gonzalez and Ward, Journal of Marine Research, 34, 691–693, 1976) at the same true salinity given by S(‰)T = a + bS(‰), where a is related to the river water input of dissolved solids, b = (35.171-a)/35.000 and S(‰) = 1.00566 Cl(‰). By adjusting a to 0.123±0.005 g kg−1 the differences between the directly measured and calculated densities had a minimum standard deviation of 8.7 × 1-−6 g cm−3. The value of a determined from the density data is excellent agreement with the value (0.121 ± 0.019 g kg−1) determined from the composition of these same samples (Kremling, 1969, KielerMeeresforschungen, 24, 1–20, 1970; Deep-Sea Research, 19, 377–383, 1972b). the measured densities have been fitted by at least squares method to the equation: d = d0 + AS(‰)T + BS(‰)Tsol;23, where d0 is the density of pure water (Kell, Journal of Chemical and Engineering Data, 12, 66–69, 1976), A and B are temperature dependent parameters. The densities fit this equation to a standard deviation of 7.1 × 10−6 g cm−3. The smoothed densities are in good agreement (± 6ppm) with the results of Knudsenet al. (Kongelige DanskeVidenskabernes Selskabs, 1, 1–151, 1902) providing the comparisons are made at the true salinity. These results demonstrate that the densities of a natural estuary are equal (within experimental error) to those of seawater diluted with pure water when compared at the same total dissolved solid concentration, which is in agreement with theoretical calculations (Millero, Marine chemistry in the coastal environment. A.C.S. Symposium Series Vol. 18, pp. 25–55, 1975) and measurements on an artificial estuary (Millero, Lawson and Gonzalez, Journal of Geophysical Research, 18, 1177–1179). The physical chemical properties of the Baltic or any estuary can thus be determined from those of seawater diluted with pure water by using only the river input of total solids (a).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
波罗的海海水的密度
用振动密度计测量了波罗的海海水的相对密度,盐度为3.5 ~ 20‰,温度为0.36 ~ 20°C。在S(‰)T = a + bS(‰)给出的相同真实盐度条件下,将直接测量的密度与海水状态方程(Millero, Gonzalez和Ward, Journal of Marine Research, 34, 691-693, 1976)进行比较,其中a与溶解固体的河水输入有关,b = (35.171-a)/35.000, S(‰)= 1.00566 Cl(‰)。通过将a调整为0.123±0.005 g kg - 1,直接测量的密度与计算的密度之差的最小标准偏差为8.7 × 1- 6 g cm - 3。从密度数据中测定的a值与从这些相同样品的组成中测定的值(0.121±0.019 g kg−1)非常吻合(Kremling, 1969, KielerMeeresforschungen, 24, 1 - 20, 1970;海洋科学与技术,2016,33(2):481 - 481。所测密度用最小二乘法拟合为:d = d0 + AS(‰)T + BS(‰)Tsol;23,其中d0为纯水密度(Kell, Journal of Chemical and Engineering Data, 12, 66-69, 1976), A和B为温度相关参数。密度与该方程拟合的标准差为7.1 × 10−6 g cm−3。如果在真实盐度下进行比较,则平滑密度与Knudsenet al. (kongge DanskeVidenskabernes Selskabs, 1,1 - 151,1902)的结果非常吻合(±6ppm)。这些结果表明,在相同的总溶解固体浓度下,天然河口的密度与用纯水稀释的海水的密度相等(在实验误差范围内),这与理论计算(Millero,沿海环境中的海洋化学)是一致的。A.C.S.研讨会系列卷18,第25-55页,1975)和人工河口的测量(Millero, Lawson和Gonzalez,地球物理研究学报,18,1177-1179)。因此,波罗的海或任何河口的物理化学性质都可以根据用纯水稀释的海水的物理化学性质来确定,只使用河流输入的总固体(a)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Announcements Equatorially trapped waves and the generation of the Somali Current Longhurst-hardy Plankton recorders: their design and use to minimize bias The densities of Baltic Sea waters Design considerations of wing stabilized free-fall vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1