Enhancement of Vacuum Gas Oil Viscosity Using Ultrasound

F. Abbas, Tariq M. Naife, D. J. Ahmed, Eman B. Hasan
{"title":"Enhancement of Vacuum Gas Oil Viscosity Using Ultrasound","authors":"F. Abbas, Tariq M. Naife, D. J. Ahmed, Eman B. Hasan","doi":"10.52716/jprs.v13i2.695","DOIUrl":null,"url":null,"abstract":"Ultrasonic treatment is a suitable method for refinery processes that Acoustic cavitation is a technique that allows high levels of energy to be released into the liquid, which leads to changes in fluid properties such as a decrease in viscosity. Additionally, it's an effective way to improve the economic feasibility of physicochemical processing to enhance the quality of the product. In this work, vacuum gas oil with viscosity of  8.4 c.st, provided by Iraqi refineries, was treated by ultrasound radiation and studied the effect of several parameters on viscosity such as sonication time (5,10,15,20,30) min, power amplitude(10,20,30,40,50)watt, and frequency (20,30,40,50) kHr. It was found from the results that the viscosity decreased from (8.4) c.st to (5.82) c.st, which represents a percentage reduction of up to 30.7% compared to the value before treatment. This result was obtained after 30 min., also the 50% of ultrasound power is the appropriate to reduce the viscosity, where The experiment showed that 20 kHz of ultrasound frequency has a decreasing effect on the viscosity as the percentage reaches 30%.","PeriodicalId":16710,"journal":{"name":"Journal of Petroleum Research and Studies","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Research and Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52716/jprs.v13i2.695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrasonic treatment is a suitable method for refinery processes that Acoustic cavitation is a technique that allows high levels of energy to be released into the liquid, which leads to changes in fluid properties such as a decrease in viscosity. Additionally, it's an effective way to improve the economic feasibility of physicochemical processing to enhance the quality of the product. In this work, vacuum gas oil with viscosity of  8.4 c.st, provided by Iraqi refineries, was treated by ultrasound radiation and studied the effect of several parameters on viscosity such as sonication time (5,10,15,20,30) min, power amplitude(10,20,30,40,50)watt, and frequency (20,30,40,50) kHr. It was found from the results that the viscosity decreased from (8.4) c.st to (5.82) c.st, which represents a percentage reduction of up to 30.7% compared to the value before treatment. This result was obtained after 30 min., also the 50% of ultrasound power is the appropriate to reduce the viscosity, where The experiment showed that 20 kHz of ultrasound frequency has a decreasing effect on the viscosity as the percentage reaches 30%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超声增强真空气油粘度的研究
超声处理是一种适用于炼油工艺的方法。声波空化是一种技术,它允许向液体中释放高水平的能量,从而导致流体性质的变化,如粘度的降低。同时也是提高理化加工经济可行性,提高产品质量的有效途径。以伊拉克炼油厂提供的粘度为8.4 c.st的真空瓦斯油为研究对象,研究了超声时间(5、10、15、20、30)min、功率振幅(10、20、30、40、50)w和频率(20、30、40、50)kHr等参数对粘度的影响。结果发现,黏度从(8.4)c.st降至(5.82)c.st,与处理前相比降低了30.7%。实验表明,当超声功率达到30%时,20 kHz的超声频率对粘度有一定的降低作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Iraq Crude Oil Exports- July, August, September, October, November, December/ 2022 Biosynthesis of Fe/Pd Bimetallic Nanoparticles and Used for Removal of Synthetic Oily Wastewater A Regional Static Model of the Dammam Aquifer as a Source of Injection Water, Southern Iraq Effect of the Deep Marin Balambo Formation on the Qamchuqa Reservoirs in Jambur Field Converting of Waste Crude Oil of East Baghdad Oil Field into Light Hydrocarbons Using Thermal Cracking Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1