Low-Complexity High-Accuracy 5G and LTE Multichannel Spectrum Analysis Aided by Unsupervised Machine Learning

Benjamin Imanilov
{"title":"Low-Complexity High-Accuracy 5G and LTE Multichannel Spectrum Analysis Aided by Unsupervised Machine Learning","authors":"Benjamin Imanilov","doi":"10.1109/IEMCON51383.2020.9284843","DOIUrl":null,"url":null,"abstract":"In this paper we propose a new method of occupied spectrum analysis for channel detection in a shared spectrum environment. Our approach is based on iterative multi-stage multi-resolution scanning using configurable Sliding Discrete Fourier Transform (SDFT) aided by an Unsupervised Machine Learning (UML) clustering method. The proposed low-complexity high-accuracy real-time spectrum scanning and channel detection is simulated for multiple Radio Access Networks (RAN) of Long-Term Evolution (LTE) & Fifth Generation (5G) channels in a shared frequency band. The results of the simulation show possible successful utilization of the proposed method as a sensing tool for spectrum sharing management and other applications where accurate channel detection occupancy is required.","PeriodicalId":6871,"journal":{"name":"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","volume":"81 1","pages":"0031-0040"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMCON51383.2020.9284843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we propose a new method of occupied spectrum analysis for channel detection in a shared spectrum environment. Our approach is based on iterative multi-stage multi-resolution scanning using configurable Sliding Discrete Fourier Transform (SDFT) aided by an Unsupervised Machine Learning (UML) clustering method. The proposed low-complexity high-accuracy real-time spectrum scanning and channel detection is simulated for multiple Radio Access Networks (RAN) of Long-Term Evolution (LTE) & Fifth Generation (5G) channels in a shared frequency band. The results of the simulation show possible successful utilization of the proposed method as a sensing tool for spectrum sharing management and other applications where accurate channel detection occupancy is required.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于无监督机器学习的低复杂度高精度5G和LTE多通道频谱分析
本文提出了一种新的占用频谱分析方法,用于共享频谱环境下的信道检测。我们的方法是基于迭代的多阶段多分辨率扫描,使用可配置的滑动离散傅里叶变换(SDFT),辅以无监督机器学习(UML)聚类方法。在共享频段的LTE和5G信道的多个无线接入网(RAN)中,对所提出的低复杂度、高精度实时频谱扫描和信道检测进行了仿真。仿真结果表明,该方法可以成功地应用于频谱共享管理和其他需要精确信道检测占用的应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Financial Time Series Stock Price Prediction using Deep Learning Development of a Low-cost LoRa based SCADA system for Monitoring and Supervisory Control of Small Renewable Energy Generation Systems A Systematic Literature Review in Causal Association Rules Mining Distance-Based Anomaly Detection for Industrial Surfaces Using Triplet Networks Analysis of Requirements for Autonomous Driving Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1