A generalized Boltzmann kinetic theory for strongly magnetized plasmas with application to friction

L. Jose, S. Baalrud
{"title":"A generalized Boltzmann kinetic theory for strongly magnetized plasmas with application to friction","authors":"L. Jose, S. Baalrud","doi":"10.1063/5.0025158","DOIUrl":null,"url":null,"abstract":"Coulomb collisions in plasmas are typically modeled using the Boltzmann collision operator, or its variants, which apply to weakly magnetized plasmas in which the typical gyroradius of particles significantly exceeds the Debye length. Conversely, O'Neil has developed a kinetic theory to treat plasmas that are so strongly magnetized that the typical gyroradius of particles is much smaller than the distance of closest approach in a binary collision. Here, we develop a generalized collision operator that applies across the full range of magnetization strength. To demonstrate novel physics associated with strong magnetization, it is used to compute the friction force on a massive test charge. In addition to the traditional stopping power component, this is found to exhibit a transverse component that is perpendicular to both the velocity and Lorentz force vectors in the strongly magnetized regime, as was predicted recently using linear response theory. Good agreement is found between the collision theory and linear response theory in the regime in which both apply, but the new collision theory also applies to stronger magnetization strength regimes than the linear response theory is expected to apply in.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0025158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Coulomb collisions in plasmas are typically modeled using the Boltzmann collision operator, or its variants, which apply to weakly magnetized plasmas in which the typical gyroradius of particles significantly exceeds the Debye length. Conversely, O'Neil has developed a kinetic theory to treat plasmas that are so strongly magnetized that the typical gyroradius of particles is much smaller than the distance of closest approach in a binary collision. Here, we develop a generalized collision operator that applies across the full range of magnetization strength. To demonstrate novel physics associated with strong magnetization, it is used to compute the friction force on a massive test charge. In addition to the traditional stopping power component, this is found to exhibit a transverse component that is perpendicular to both the velocity and Lorentz force vectors in the strongly magnetized regime, as was predicted recently using linear response theory. Good agreement is found between the collision theory and linear response theory in the regime in which both apply, but the new collision theory also applies to stronger magnetization strength regimes than the linear response theory is expected to apply in.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
强磁化等离子体的广义玻尔兹曼运动理论及其在摩擦中的应用
等离子体中的库仑碰撞通常使用玻尔兹曼碰撞算符或其变体进行建模,这些算符适用于弱磁化等离子体,其中粒子的典型回旋半径明显超过德拜长度。相反,奥尼尔发展了一种动力学理论来处理被强烈磁化的等离子体,这种等离子体的典型陀螺半径比双星碰撞中最接近的距离小得多。在这里,我们开发了一个适用于整个磁化强度范围的广义碰撞算符。为了证明与强磁化相关的新物理,它被用于计算大质量测试电荷上的摩擦力。除了传统的停止功率分量外,还发现在强磁化状态下存在垂直于速度和洛伦兹力矢量的横向分量,正如最近使用线性响应理论所预测的那样。碰撞理论和线性响应理论在两者都适用的情况下有很好的一致性,但新的碰撞理论也适用于比线性响应理论更强的磁化强度情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Kinetic simulation of electron cyclotron resonance assisted gas breakdown in split-biased waveguides for ITER collective Thomson scattering diagnostic Topological phases, topological phase transition, and bulk-edge correspondence of magnetized cold plasmas Non-Maxwellianity of electron distributions near Earth's magnetopause Theory of Plasma-Cascade Instability Ion cyclotron parametric turbulence and anomalous convective transport of the inhomogeneous plasma in front of the fast wave antenna
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1