{"title":"Simulation and development of sub-wavelength grated dielectric ARCs for CPV applications","authors":"Wei Wang, A. Freundlich","doi":"10.1109/PVSC.2013.6745104","DOIUrl":null,"url":null,"abstract":"Here, and in an attempt to identify a better alternative to the conventional dual layer ARCs for III-V multi-junction concentrator cells operating with or without protective cover glass in conjunction with wide acceptance angles, we have undertaken a systematic analysis of design parameters and angular dependent antireflective properties of dielectric grating formed, through the implementation of sub-wavelength arrays of 2D pyramidal gratings of ZnS and TiO2. Though the study indicated no or limited improvement for devices operating with a SiO2 like cover glass, in the absence of a cover the evaluation indicates that through a careful selection of the design these dielectric gratings can reduce reflection-loss related current losses by 2-3 fold by comparison to their planar double layer ARC counterparts. i.e. for a 3J metamorphic device this lead to a current improvement of 0.7 mA/cm2 for a 60 degree acceptance angles.","PeriodicalId":6350,"journal":{"name":"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)","volume":"12 1","pages":"3049-3052"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2013.6745104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Here, and in an attempt to identify a better alternative to the conventional dual layer ARCs for III-V multi-junction concentrator cells operating with or without protective cover glass in conjunction with wide acceptance angles, we have undertaken a systematic analysis of design parameters and angular dependent antireflective properties of dielectric grating formed, through the implementation of sub-wavelength arrays of 2D pyramidal gratings of ZnS and TiO2. Though the study indicated no or limited improvement for devices operating with a SiO2 like cover glass, in the absence of a cover the evaluation indicates that through a careful selection of the design these dielectric gratings can reduce reflection-loss related current losses by 2-3 fold by comparison to their planar double layer ARC counterparts. i.e. for a 3J metamorphic device this lead to a current improvement of 0.7 mA/cm2 for a 60 degree acceptance angles.