Enriched Feature Guided Refinement Network for Object Detection

Jing Nie, R. Anwer, Hisham Cholakkal, F. Khan, Yanwei Pang, Ling Shao
{"title":"Enriched Feature Guided Refinement Network for Object Detection","authors":"Jing Nie, R. Anwer, Hisham Cholakkal, F. Khan, Yanwei Pang, Ling Shao","doi":"10.1109/ICCV.2019.00963","DOIUrl":null,"url":null,"abstract":"We propose a single-stage detection framework that jointly tackles the problem of multi-scale object detection and class imbalance. Rather than designing deeper networks, we introduce a simple yet effective feature enrichment scheme to produce multi-scale contextual features. We further introduce a cascaded refinement scheme which first instills multi-scale contextual features into the prediction layers of the single-stage detector in order to enrich their discriminative power for multi-scale detection. Second, the cascaded refinement scheme counters the class imbalance problem by refining the anchors and enriched features to improve classification and regression. Experiments are performed on two benchmarks: PASCAL VOC and MS COCO. For a 320×320 input on the MS COCO test-dev, our detector achieves state-of-the-art single-stage detection accuracy with a COCO AP of 33.2 in the case of single-scale inference, while operating at 21 milliseconds on a Titan XP GPU. For a 512×512 input on the MS COCO test-dev, our approach obtains an absolute gain of 1.6% in terms of COCO AP, compared to the best reported single-stage results[5]. Source code and models are available at: https://github.com/Ranchentx/EFGRNet.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"10 1","pages":"9536-9545"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

Abstract

We propose a single-stage detection framework that jointly tackles the problem of multi-scale object detection and class imbalance. Rather than designing deeper networks, we introduce a simple yet effective feature enrichment scheme to produce multi-scale contextual features. We further introduce a cascaded refinement scheme which first instills multi-scale contextual features into the prediction layers of the single-stage detector in order to enrich their discriminative power for multi-scale detection. Second, the cascaded refinement scheme counters the class imbalance problem by refining the anchors and enriched features to improve classification and regression. Experiments are performed on two benchmarks: PASCAL VOC and MS COCO. For a 320×320 input on the MS COCO test-dev, our detector achieves state-of-the-art single-stage detection accuracy with a COCO AP of 33.2 in the case of single-scale inference, while operating at 21 milliseconds on a Titan XP GPU. For a 512×512 input on the MS COCO test-dev, our approach obtains an absolute gain of 1.6% in terms of COCO AP, compared to the best reported single-stage results[5]. Source code and models are available at: https://github.com/Ranchentx/EFGRNet.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强特征导向的目标检测细化网络
我们提出了一个单阶段检测框架,共同解决了多尺度目标检测和类不平衡问题。我们不是设计更深层次的网络,而是引入一种简单而有效的特征丰富方案来产生多尺度上下文特征。我们进一步引入了一种级联改进方案,该方案首先将多尺度上下文特征注入单级检测器的预测层,以增强其对多尺度检测的判别能力。其次,级联细化方案通过细化锚点和丰富特征来解决类不平衡问题,从而提高分类和回归能力。在PASCAL VOC和MS COCO两个基准上进行了实验。对于MS COCO测试开发的320×320输入,我们的检测器在单尺度推理的情况下实现了最先进的单级检测精度,COCO AP为33.2,而在Titan XP GPU上运行为21毫秒。对于MS COCO测试开发的512×512输入,与报告的最佳单阶段结果[5]相比,我们的方法在COCO AP方面获得了1.6%的绝对增益。源代码和模型可在:https://github.com/Ranchentx/EFGRNet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Very Long Natural Scenery Image Prediction by Outpainting VTNFP: An Image-Based Virtual Try-On Network With Body and Clothing Feature Preservation Towards Latent Attribute Discovery From Triplet Similarities Gaze360: Physically Unconstrained Gaze Estimation in the Wild Attention Bridging Network for Knowledge Transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1