Personalized decision making – A conceptual introduction

IF 1.7 4区 医学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Journal of Causal Inference Pub Date : 2022-08-19 DOI:10.48550/arXiv.2208.09558
Scott Mueller
{"title":"Personalized decision making – A conceptual introduction","authors":"Scott Mueller","doi":"10.48550/arXiv.2208.09558","DOIUrl":null,"url":null,"abstract":"Abstract Personalized decision making targets the behavior of a specific individual, while population-based decision making concerns a subpopulation resembling that individual. This article clarifies the distinction between the two and explains why the former leads to more informed decisions. We further show that by combining experimental and observational studies, we can obtain valuable information about individual behavior and, consequently, improve decisions over those obtained from experimental studies alone. In particular, we show examples where such a combination discriminates between individuals who can benefit from a treatment and those who cannot – information that would not be revealed by experimental studies alone. We outline areas where this method could be of benefit to both policy makers and individuals involved.","PeriodicalId":48576,"journal":{"name":"Journal of Causal Inference","volume":"37 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Causal Inference","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.09558","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 24

Abstract

Abstract Personalized decision making targets the behavior of a specific individual, while population-based decision making concerns a subpopulation resembling that individual. This article clarifies the distinction between the two and explains why the former leads to more informed decisions. We further show that by combining experimental and observational studies, we can obtain valuable information about individual behavior and, consequently, improve decisions over those obtained from experimental studies alone. In particular, we show examples where such a combination discriminates between individuals who can benefit from a treatment and those who cannot – information that would not be revealed by experimental studies alone. We outline areas where this method could be of benefit to both policy makers and individuals involved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
个性化决策-概念介绍
个性化决策针对的是特定个体的行为,而基于群体的决策关注的是与该个体相似的亚群体。本文阐明了两者之间的区别,并解释了为什么前者会导致更明智的决策。我们进一步表明,通过结合实验和观察研究,我们可以获得有关个体行为的有价值的信息,因此,比单独从实验研究中获得的信息更能改进决策。特别是,我们展示了一些例子,说明这种组合区分了能够从治疗中受益的个体和不能从治疗中受益的个体——这些信息仅通过实验研究是无法揭示的。我们概述了这种方法可能对政策制定者和相关个人都有益的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Causal Inference
Journal of Causal Inference Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.90
自引率
14.30%
发文量
15
审稿时长
86 weeks
期刊介绍: Journal of Causal Inference (JCI) publishes papers on theoretical and applied causal research across the range of academic disciplines that use quantitative tools to study causality.
期刊最新文献
Evaluating Boolean relationships in Configurational Comparative Methods Comparison of open-source software for producing directed acyclic graphs. LINGUISTIC FEATURES AND PRESENTATION OF MATERIALS ON ENGLISH TEXTBOOK “WHEN ENGLISH RINGS A BELL” BASED ON BSNP Heterogeneous interventional effects with multiple mediators: Semiparametric and nonparametric approaches Attributable fraction and related measures: Conceptual relations in the counterfactual framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1