{"title":"Novel FTIR and visible infrared imaging assessment of binary biofuel stability and abated NOx for clean environment assisting energy approach","authors":"Mohamed Nishath Peer, Krishnaveni Anbalagan","doi":"10.1177/0958305x221112912","DOIUrl":null,"url":null,"abstract":"To compensate the oil demand and pollution, scientists explore biodiesel as a pollution free alternate energy. But depending on one particular species of feedstock will lead to its extinction like diesel. For this intent, this research proposes a novelty on blending of binary non-edible high oil yielding species. As biodiesel is a natural constituent with elevated oxygen content, a stability analysis has to be performed to diminish its rapid decay. For stabilizing fuel properties synthetic antioxidants have been involved as inhibitors. Previous studies have been performed on the stability analysis individually as oxidation, thermal and storage stability without analyzing them mutually. This research fills the key gap by deeper mutual stability analysis, as the output parameters of these three stabilities are interrelated. Few samples have shown best stability output parameters which challenges in narrowing the best blend. To face this task, a multi objective optimization study has been done. NOx emission has been reduced with the aid of antioxidants as a twin reward. Two novel assessment tools for validating are, i) FTIR, by which the impact of molecular arrangements on stability variation has been evaluated and ii) Using Infrared Imaging Technique, by which the NOX has been analyzed visually correlating the emission level and engine combustion temperature.","PeriodicalId":11652,"journal":{"name":"Energy & Environment","volume":"9 1","pages":"2544 - 2600"},"PeriodicalIF":4.0000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0958305x221112912","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
To compensate the oil demand and pollution, scientists explore biodiesel as a pollution free alternate energy. But depending on one particular species of feedstock will lead to its extinction like diesel. For this intent, this research proposes a novelty on blending of binary non-edible high oil yielding species. As biodiesel is a natural constituent with elevated oxygen content, a stability analysis has to be performed to diminish its rapid decay. For stabilizing fuel properties synthetic antioxidants have been involved as inhibitors. Previous studies have been performed on the stability analysis individually as oxidation, thermal and storage stability without analyzing them mutually. This research fills the key gap by deeper mutual stability analysis, as the output parameters of these three stabilities are interrelated. Few samples have shown best stability output parameters which challenges in narrowing the best blend. To face this task, a multi objective optimization study has been done. NOx emission has been reduced with the aid of antioxidants as a twin reward. Two novel assessment tools for validating are, i) FTIR, by which the impact of molecular arrangements on stability variation has been evaluated and ii) Using Infrared Imaging Technique, by which the NOX has been analyzed visually correlating the emission level and engine combustion temperature.
期刊介绍:
Energy & Environment is an interdisciplinary journal inviting energy policy analysts, natural scientists and engineers, as well as lawyers and economists to contribute to mutual understanding and learning, believing that better communication between experts will enhance the quality of policy, advance social well-being and help to reduce conflict. The journal encourages dialogue between the social sciences as energy demand and supply are observed and analysed with reference to politics of policy-making and implementation. The rapidly evolving social and environmental impacts of energy supply, transport, production and use at all levels require contribution from many disciplines if policy is to be effective. In particular E & E invite contributions from the study of policy delivery, ultimately more important than policy formation. The geopolitics of energy are also important, as are the impacts of environmental regulations and advancing technologies on national and local politics, and even global energy politics. Energy & Environment is a forum for constructive, professional information sharing, as well as debate across disciplines and professions, including the financial sector. Mathematical articles are outside the scope of Energy & Environment. The broader policy implications of submitted research should be addressed and environmental implications, not just emission quantities, be discussed with reference to scientific assumptions. This applies especially to technical papers based on arguments suggested by other disciplines, funding bodies or directly by policy-makers.