Gene Action Studies in the Inheritance of Yield and Quality Attributing Traits in Diallel Cross of Cotton (Gossypium hirsutum L.)

V. J. Zapadiya
{"title":"Gene Action Studies in the Inheritance of Yield and Quality Attributing Traits in Diallel Cross of Cotton (Gossypium hirsutum L.)","authors":"V. J. Zapadiya","doi":"10.18782/2582-2845.8713","DOIUrl":null,"url":null,"abstract":"A field experiment was conducted to evaluate the 45 F1 hybrids derived from 10×10 half diallel fashion along with ten parents and one standard check GN.Cot.Hy-14 were sown in randomized block design with three replications during kharif -2017 at Cotton Research Station, Junagadh Agricultural University, Junagadh. The genetic components of variation were determined for 12 characters viz., days to 50% flowering, days to 50% boll opening, plant height (cm), number of monopodia per plant, number of sympodia per plant, number of bolls per plant, boll weight (g), seed cotton yield per plant (g), ginning percentage (%), seed index (g), lint index (g) and oil percentage (%).The estimate of the components of variation revealed significant results for both additive (D) as well as dominance effects (H1 and H2) for all the characters except plant height non-significant H2 component, but in majority of traits (except plant height, lint index) H1 was higher than D indicating dominance components were important in the inheritance of seed cotton yield and its components. The average degree of dominance (H1/D)1/2 was found to be more than unity for all the traits (except plant height, number of monopodia per plant and lint index indicating partial dominance) indicating over dominance. Asymmetrical distribution of positive and negative genes in the parents was observed for all the traits. High estimates of heritability in narrow sense was observed for days to 50% flowering, days to 50 % boll bursting, number of monopodia per plant, ginning percentage (%), lint index (g) and oil content (%) suggesting that selection based on these attribute would lead to rapid improvement. Due to preponderance of non-additive gene effects of seed cotton yield per plant and most of its component traits, heterosis breeding would also be practically feasible in cotton.","PeriodicalId":13334,"journal":{"name":"Indian Journal of Pure & Applied Biosciences","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure & Applied Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18782/2582-2845.8713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A field experiment was conducted to evaluate the 45 F1 hybrids derived from 10×10 half diallel fashion along with ten parents and one standard check GN.Cot.Hy-14 were sown in randomized block design with three replications during kharif -2017 at Cotton Research Station, Junagadh Agricultural University, Junagadh. The genetic components of variation were determined for 12 characters viz., days to 50% flowering, days to 50% boll opening, plant height (cm), number of monopodia per plant, number of sympodia per plant, number of bolls per plant, boll weight (g), seed cotton yield per plant (g), ginning percentage (%), seed index (g), lint index (g) and oil percentage (%).The estimate of the components of variation revealed significant results for both additive (D) as well as dominance effects (H1 and H2) for all the characters except plant height non-significant H2 component, but in majority of traits (except plant height, lint index) H1 was higher than D indicating dominance components were important in the inheritance of seed cotton yield and its components. The average degree of dominance (H1/D)1/2 was found to be more than unity for all the traits (except plant height, number of monopodia per plant and lint index indicating partial dominance) indicating over dominance. Asymmetrical distribution of positive and negative genes in the parents was observed for all the traits. High estimates of heritability in narrow sense was observed for days to 50% flowering, days to 50 % boll bursting, number of monopodia per plant, ginning percentage (%), lint index (g) and oil content (%) suggesting that selection based on these attribute would lead to rapid improvement. Due to preponderance of non-additive gene effects of seed cotton yield per plant and most of its component traits, heterosis breeding would also be practically feasible in cotton.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双列杂交棉花产量和品质性状遗传中的基因作用研究
采用10×10半双列杂交方式,10个亲本和1个标准检验GN.Cot,对45个F1杂交品种进行了田间试验。Hy-14采用随机区组设计,3个重复,于2017年收获季在印度贾那加德农业大学棉花研究站播种。测定了12个性状的遗传变异组成,即开花至50%的天数、开铃至50%的天数、株高(cm)、单株单足部数、单株对足部数、单株结铃数、单株结铃数、棉铃重(g)、单株籽棉产量(g)、发芽率(%)、种子指数(g)、皮棉指数(g)和含油率(%)。变异分量的估计表明,除株高外,其余性状的加性效应(D)和显性效应(H1和H2)均显著,但除株高、皮棉指数外,大部分性状的H1均高于D,说明显性成分在籽棉产量及其组成部分的遗传中起重要作用。平均优势度(H1/D)1/2大于1,除株高、单株单足数和皮棉指数为部分优势外,其余性状均为偏优势。所有性状的正、负基因在亲本中均呈不对称分布。开花天数至50%、爆铃天数至50%、单株单足植物数、发芽率(%)、皮棉指数(g)和含油量(%)的狭义遗传力估计较高,表明基于这些属性的选择将导致快速改良。由于籽棉单株产量及其大部分组成性状的非加性基因效应占优势,棉花的杂种优势育种也是切实可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Immobilization Strategies for L-Asparaginase from Ganoderma australe GPC191: Impact on Enzyme Activity, Stability, and Reusability Effect of Sukumara Gritham Residue Based Diet on Haemato-Biochemical Parameters of Malabari Goat Kids Diversity and Distribution of Large Herbivore Mammals in Kawal Tiger Reserve, Telangana State Impact of Training on Modern Machineries and Improved Agricultural Technologies towards Cognitive Assessment of Farmers Modeling and Optimization of Chlorpyrifos by Fungi Isolated from Agricultural Soil, Elucidating their Degradation Pathways by LC-MS-Based Metabolomics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1