Spin Polarization of Mn Enhances Grain Boundary Sliding in Mg

V. Wang, Jun-ping Du, H. Somekawa, S. Ogata, W. Geng
{"title":"Spin Polarization of Mn Enhances Grain Boundary Sliding in Mg","authors":"V. Wang, Jun-ping Du, H. Somekawa, S. Ogata, W. Geng","doi":"10.2139/ssrn.3820201","DOIUrl":null,"url":null,"abstract":"Segregation of rare earth alloying elements are known to segregate to grain boundaries in Mg and suppress grain boundary sliding via strong chemical bonds. Segregation of Mn, however, has recently been found to enhance grain boundary sliding in Mg and thereby boosting its ductility. Taking the Mg (-2114) twin boundary as an example, we have performed a first-principles comparative study on the segregation and chemical bonding of Y, Zn, and Mn at this boundary. We find that both Y-4d and Mn-3d states hybridize with the Mg-3sp states, while Zn-Mg bonding is characterized by charge transfer only. Strong spin-polarization of Mn pushes the up-spin 3d states down, leading to less anisotropic Mn-Mg bonds with more delocalized charge distribution at the twin boundary, and thus promotes grain boundary plasticity, e.g., grain boundary sliding.","PeriodicalId":9858,"journal":{"name":"Chemical Engineering (Engineering) eJournal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering (Engineering) eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3820201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Segregation of rare earth alloying elements are known to segregate to grain boundaries in Mg and suppress grain boundary sliding via strong chemical bonds. Segregation of Mn, however, has recently been found to enhance grain boundary sliding in Mg and thereby boosting its ductility. Taking the Mg (-2114) twin boundary as an example, we have performed a first-principles comparative study on the segregation and chemical bonding of Y, Zn, and Mn at this boundary. We find that both Y-4d and Mn-3d states hybridize with the Mg-3sp states, while Zn-Mg bonding is characterized by charge transfer only. Strong spin-polarization of Mn pushes the up-spin 3d states down, leading to less anisotropic Mn-Mg bonds with more delocalized charge distribution at the twin boundary, and thus promotes grain boundary plasticity, e.g., grain boundary sliding.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mn自旋极化增强Mg的晶界滑动
已知稀土合金元素的偏析在Mg中偏析到晶界,并通过强化学键抑制晶界滑动。然而,锰的偏析最近被发现可以增强镁的晶界滑动,从而提高其延展性。以Mg(-2114)孪晶界为例,对该晶界上Y、Zn、Mn的偏析和化学键进行了第一性原理对比研究。我们发现Y-4d态和Mn-3d态都与Mg-3sp态杂化,而Zn-Mg键仅以电荷转移为特征。Mn的强自旋极化推动了自旋向上的三维态下移,导致Mn- mg键的各向异性减少,孪晶界处电荷分布偏多,从而促进了晶界的可塑性,如晶界滑动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Eutectic Solvent Assisted Facile and Efficient Synthesis of Nitrogen-Doped Magnetic Biochar for Hexavalent Chromium Elimination: Mechanism and Performance Insights Computational Simulation of Ionization Processes in Single-Bubble and Multi-Bubble Sonoluminescence Microbubbles for Effective Cleaning of Metal Surfaces Without Chemical Agents Unprecedented Age-Hardening and its Structural Requirement in a Severely Deformed Al-Cu-Mg Alloy Elucidating the Interaction of Enantiomeric Cu(Ii) Complexes with DNA, Rna and Hsa: A Comparative Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1