Different Clogging Behavior of Wastewater Pumps

D. Beck, Yvonne Holzbauer, P. Thamsen
{"title":"Different Clogging Behavior of Wastewater Pumps","authors":"D. Beck, Yvonne Holzbauer, P. Thamsen","doi":"10.1115/fedsm2021-65422","DOIUrl":null,"url":null,"abstract":"\n The transport of wastewater presents operators with increasing challenges for their wastewater pumps due to an increasing proportion of tear-resistant fibrous materials and new types of hygiene articles (e.g. wet wipes) in the wastewater. This paper describes the different clogging behavior of wastewater pumps, which were recorded during the functional performance tests. In addition to the findings of the points susceptible to clogging, the maximum uptake of solids by an impeller is also discussed. The maximum uptake of solids is defined as the degree of saturation. Furthermore, it is shown to what extent the different clogging behavior influence the hydraulic performance and the resulting efficiency changes.\n In these tests, it became apparent that wastewater pumps react very differently to clogging. On the one hand, it can lead to a reduction in hydraulic function, which reduces the efficiency of the system. A distinction must be made here as to whether the pumps with a certain number of solids, a defined degree of saturation, retain their function or are brought to a standstill. On the other hand, the hydraulic performance can remain almost constant or, in some cases, be increased despite the clogging that occurs, but this is accompanied by an increased power requirement and can thus reduce the service life and the efficiency of the system.","PeriodicalId":23636,"journal":{"name":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2021-65422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The transport of wastewater presents operators with increasing challenges for their wastewater pumps due to an increasing proportion of tear-resistant fibrous materials and new types of hygiene articles (e.g. wet wipes) in the wastewater. This paper describes the different clogging behavior of wastewater pumps, which were recorded during the functional performance tests. In addition to the findings of the points susceptible to clogging, the maximum uptake of solids by an impeller is also discussed. The maximum uptake of solids is defined as the degree of saturation. Furthermore, it is shown to what extent the different clogging behavior influence the hydraulic performance and the resulting efficiency changes. In these tests, it became apparent that wastewater pumps react very differently to clogging. On the one hand, it can lead to a reduction in hydraulic function, which reduces the efficiency of the system. A distinction must be made here as to whether the pumps with a certain number of solids, a defined degree of saturation, retain their function or are brought to a standstill. On the other hand, the hydraulic performance can remain almost constant or, in some cases, be increased despite the clogging that occurs, but this is accompanied by an increased power requirement and can thus reduce the service life and the efficiency of the system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
污水泵的不同堵塞特性
由于废水中抗撕裂纤维材料和新型卫生用品(如湿巾)的比例不断增加,废水的输送给运营商的废水泵带来了越来越大的挑战。本文介绍了在功能性能试验中记录的污水泵的不同堵塞行为。除了发现易堵塞的点外,还讨论了叶轮对固体的最大吸收。固体的最大吸收量被定义为饱和度。此外,还分析了不同堵塞行为对水力性能的影响程度以及由此产生的效率变化。在这些测试中,很明显,废水泵对堵塞的反应非常不同。一方面,它会导致液压功能的降低,从而降低系统的效率。这里必须加以区分的是,当泵具有一定数量的固体和一定程度的饱和时,它是保持其功能还是停止工作。另一方面,液压性能几乎可以保持不变,或者在某些情况下,尽管发生堵塞,但这伴随着功率需求的增加,从而可能降低系统的使用寿命和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fluid Dynamics and Contact Stress on Hard Sealing Surface Analysis of LNG Cryogenic Ball Valve 0D Modeling of Fuel Tank for Vapor Generation Impact of Urban Microclimate on Air Conditioning Energy Consumption Using Different Convective Heat Transfer Coefficient Correlations Available in Building Energy Simulation Tools Study on Overall Design of a Vertical Take-Off and Landing Unmanned Aerial Vehicle Powered by Electric Ducted Fans Influence of the Topological Structures of the Nose of High-Speed Maglev Train on Aerodynamic Performances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1