Maria Rosaria Gallipoli , Tony Alfredo Stabile , Philippe Guéguen , Marco Mucciarelli , Paolo Comelli , Michele Bertoni
{"title":"Fundamental period elongation of a RC building during the Pollino seismic swarm sequence","authors":"Maria Rosaria Gallipoli , Tony Alfredo Stabile , Philippe Guéguen , Marco Mucciarelli , Paolo Comelli , Michele Bertoni","doi":"10.1016/j.csse.2016.05.005","DOIUrl":null,"url":null,"abstract":"<div><p>A primary school in Rotonda was monitored during an on-going seismic sequence in the Pollino area, Southern Italy. The Reinforced Concrete (RC) building is a typical three story building with a concrete frame, bearing pre-cast slab flooring, concrete block internal walls and pre-cast external infill slabs. The monitoring began in September 2011 with a single station on top of the building, and after the M<sub>L</sub> <!-->=<!--> <!-->5 mainshock occurred in October 2012 a network was completed with accelerometers on each floor and real-time streaming data was transmitted to the Istituto Nazionale di Oceanografia e Geofisica Sperimentale (Udine-Northern Italy). The school suffered no visible damage during the sequence. The real-time monitoring of the Rotonda school proved to be important for two reasons: (1) the large range of magnitudes and recorded peak accelerations allowed the study of the non-stationary frequency response; (2) the results also show how a simple, real-time monitoring system using cost-effective accelerometers could be used as a tool to provide information on the damage state and usability of the school.</p></div>","PeriodicalId":100222,"journal":{"name":"Case Studies in Structural Engineering","volume":"6 ","pages":"Pages 45-52"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.csse.2016.05.005","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214399816300145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
A primary school in Rotonda was monitored during an on-going seismic sequence in the Pollino area, Southern Italy. The Reinforced Concrete (RC) building is a typical three story building with a concrete frame, bearing pre-cast slab flooring, concrete block internal walls and pre-cast external infill slabs. The monitoring began in September 2011 with a single station on top of the building, and after the ML = 5 mainshock occurred in October 2012 a network was completed with accelerometers on each floor and real-time streaming data was transmitted to the Istituto Nazionale di Oceanografia e Geofisica Sperimentale (Udine-Northern Italy). The school suffered no visible damage during the sequence. The real-time monitoring of the Rotonda school proved to be important for two reasons: (1) the large range of magnitudes and recorded peak accelerations allowed the study of the non-stationary frequency response; (2) the results also show how a simple, real-time monitoring system using cost-effective accelerometers could be used as a tool to provide information on the damage state and usability of the school.