Adjacency matrix comparison for stochastic block models

IF 0.9 4区 数学 Q4 PHYSICS, MATHEMATICAL Random Matrices-Theory and Applications Pub Date : 2019-07-26 DOI:10.1142/S2010326319500102
Guangren Yang, Songshan Yang, Wang Zhou
{"title":"Adjacency matrix comparison for stochastic block models","authors":"Guangren Yang, Songshan Yang, Wang Zhou","doi":"10.1142/S2010326319500102","DOIUrl":null,"url":null,"abstract":"In this paper, we study whether two networks arising from two stochastic block models have the same connection structures by comparing their adjacency matrices. We conduct Monte Carlo simulations study to examine the finite sample performance of the proposed method. A real data example is used to illustrate the proposed methodology.","PeriodicalId":54329,"journal":{"name":"Random Matrices-Theory and Applications","volume":"131 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Matrices-Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S2010326319500102","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study whether two networks arising from two stochastic block models have the same connection structures by comparing their adjacency matrices. We conduct Monte Carlo simulations study to examine the finite sample performance of the proposed method. A real data example is used to illustrate the proposed methodology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机块模型的邻接矩阵比较
本文通过比较两个随机块模型产生的两个网络的邻接矩阵,研究了它们是否具有相同的连接结构。我们进行了蒙特卡罗模拟研究,以检验所提出方法的有限样本性能。最后用一个实际的数据实例来说明所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Random Matrices-Theory and Applications
Random Matrices-Theory and Applications Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.90
自引率
11.10%
发文量
29
期刊介绍: Random Matrix Theory (RMT) has a long and rich history and has, especially in recent years, shown to have important applications in many diverse areas of mathematics, science, and engineering. The scope of RMT and its applications include the areas of classical analysis, probability theory, statistical analysis of big data, as well as connections to graph theory, number theory, representation theory, and many areas of mathematical physics. Applications of Random Matrix Theory continue to present themselves and new applications are welcome in this journal. Some examples are orthogonal polynomial theory, free probability, integrable systems, growth models, wireless communications, signal processing, numerical computing, complex networks, economics, statistical mechanics, and quantum theory. Special issues devoted to single topic of current interest will also be considered and published in this journal.
期刊最新文献
Factoring determinants and applications to number theory Dynamics of a rank-one multiplicative perturbation of a unitary matrix Monotonicity of the logarithmic energy for random matrices Eigenvalue distributions of high-dimensional matrix processes driven by fractional Brownian motion Characteristic polynomials of orthogonal and symplectic random matrices, Jacobi ensembles & L-functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1