CNN-N-Gram for HandwritingWord Recognition

Arik Poznanski, Lior Wolf
{"title":"CNN-N-Gram for HandwritingWord Recognition","authors":"Arik Poznanski, Lior Wolf","doi":"10.1109/CVPR.2016.253","DOIUrl":null,"url":null,"abstract":"Given an image of a handwritten word, a CNN is employed to estimate its n-gram frequency profile, which is the set of n-grams contained in the word. Frequencies for unigrams, bigrams and trigrams are estimated for the entire word and for parts of it. Canonical Correlation Analysis is then used to match the estimated profile to the true profiles of all words in a large dictionary. The CNN that is used employs several novelties such as the use of multiple fully connected branches. Applied to all commonly used handwriting recognition benchmarks, our method outperforms, by a very large margin, all existing methods.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"24 1","pages":"2305-2314"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"155","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 155

Abstract

Given an image of a handwritten word, a CNN is employed to estimate its n-gram frequency profile, which is the set of n-grams contained in the word. Frequencies for unigrams, bigrams and trigrams are estimated for the entire word and for parts of it. Canonical Correlation Analysis is then used to match the estimated profile to the true profiles of all words in a large dictionary. The CNN that is used employs several novelties such as the use of multiple fully connected branches. Applied to all commonly used handwriting recognition benchmarks, our method outperforms, by a very large margin, all existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
手写文字识别的CNN-N-Gram
给定一个手写单词的图像,使用CNN来估计它的n-gram频率分布,这是单词中包含的n-gram的集合。单字母、双字母和三字母的频率对整个单词和部分单词进行估计。然后使用典型相关分析将估计的特征与大型字典中所有单词的真实特征相匹配。所使用的CNN采用了一些新颖的方法,例如使用多个完全连接的分支。应用于所有常用的手写识别基准测试,我们的方法在很大程度上优于所有现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sketch Me That Shoe Multivariate Regression on the Grassmannian for Predicting Novel Domains How Hard Can It Be? Estimating the Difficulty of Visual Search in an Image Discovering the Physical Parts of an Articulated Object Class from Multiple Videos Simultaneous Optical Flow and Intensity Estimation from an Event Camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1