Signal Decomposition Using Masked Proximal Operators

Bennet E. Meyers, Stephen P. Boyd
{"title":"Signal Decomposition Using Masked Proximal Operators","authors":"Bennet E. Meyers, Stephen P. Boyd","doi":"10.1561/9781638281030","DOIUrl":null,"url":null,"abstract":"We consider the well-studied problem of decomposing a vector time series signal into components with different characteristics, such as smooth, periodic, nonnegative, or sparse. We describe a simple and general framework in which the components are defined by loss functions (which include constraints), and the signal decomposition is carried out by minimizing the sum of losses of the components (subject to the constraints). When each loss function is the negative log-likelihood of a density for the signal component, this framework coincides with maximum a posteriori probability (MAP) estimation; but it also includes many other interesting cases. Summarizing and clarifying prior results, we give two distributed optimization methods for computing the decomposition, which find the optimal decomposition when the component class loss functions are convex, and are good heuristics when they are not. Both methods require only the masked proximal operator of each of the component loss functions, a generalization of the well-known proximal operator that handles missing entries in its argument. Both methods are distributed, i.e., handle each component separately. We derive tractable methods for evaluating the masked proximal operators of some loss functions that, to our knowledge, have not appeared in the literature.","PeriodicalId":12340,"journal":{"name":"Found. Trends Signal Process.","volume":"11 1","pages":"1-78"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Found. Trends Signal Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/9781638281030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We consider the well-studied problem of decomposing a vector time series signal into components with different characteristics, such as smooth, periodic, nonnegative, or sparse. We describe a simple and general framework in which the components are defined by loss functions (which include constraints), and the signal decomposition is carried out by minimizing the sum of losses of the components (subject to the constraints). When each loss function is the negative log-likelihood of a density for the signal component, this framework coincides with maximum a posteriori probability (MAP) estimation; but it also includes many other interesting cases. Summarizing and clarifying prior results, we give two distributed optimization methods for computing the decomposition, which find the optimal decomposition when the component class loss functions are convex, and are good heuristics when they are not. Both methods require only the masked proximal operator of each of the component loss functions, a generalization of the well-known proximal operator that handles missing entries in its argument. Both methods are distributed, i.e., handle each component separately. We derive tractable methods for evaluating the masked proximal operators of some loss functions that, to our knowledge, have not appeared in the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于掩模近端算子的信号分解
我们考虑将矢量时间序列信号分解成具有不同特征(如平滑、周期、非负或稀疏)的组件的问题。我们描述了一个简单而通用的框架,其中的分量由损失函数(包括约束)定义,信号分解是通过最小化分量的损失总和(受约束)来进行的。当每个损失函数为信号分量密度的负对数似然时,该框架与最大后验概率(MAP)估计相吻合;但它也包括许多其他有趣的案例。在总结和澄清先验结果的基础上,给出了计算分解的两种分布式优化方法,当组件类损失函数为凸时,找到最优分解,当组件类损失函数为非凸时,具有良好的启发式。这两种方法都只需要每个分量损失函数的掩码近端算子,这是众所周知的近端算子的一种推广,它处理其参数中缺失的条目。这两种方法都是分布式的,即分别处理每个组件。我们推导了一些损失函数的掩模近端算子的可处理方法,据我们所知,这些损失函数没有出现在文献中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalizing Graph Signal Processing: High Dimensional Spaces, Models and Structures An Introduction to Quantum Machine Learning for Engineers Signal Decomposition Using Masked Proximal Operators Online Component Analysis, Architectures and Applications Wireless for Machine Learning: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1