How Good Is Your Scientific Data Generative Model?

IF 65.3 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Foundations and Trends in Machine Learning Pub Date : 2020-11-01 DOI:10.1109/MLHPCAI4S51975.2020.00018
Yuxin Yang, Ben Gremillion, Xitong Zhang, Youzuo Lin, B. Wohlberg, Qiang Guan
{"title":"How Good Is Your Scientific Data Generative Model?","authors":"Yuxin Yang, Ben Gremillion, Xitong Zhang, Youzuo Lin, B. Wohlberg, Qiang Guan","doi":"10.1109/MLHPCAI4S51975.2020.00018","DOIUrl":null,"url":null,"abstract":"Nowadays, leveraging data augmentation methods on helping resolving scientific problems becomes prevailing. And many scientific problems benefit from data augmentation methods build with deep generative models. Yet due to the complexity of the scientific data, commonly used evaluation methods of generative models appear not so suitable for generated scientific data. In this paper, we explore how do we effectively evaluate data augmentation methods for scientific data generative models? To answer this question, we use one example of real world scientific problem to show how we evaluate the quality of the generated data from two domain specific deep generative models. We observe that most existing state-of-art evaluation metrics are incompetent. They either show completely contradicting results or provide inaccurate insight from real data.","PeriodicalId":47667,"journal":{"name":"Foundations and Trends in Machine Learning","volume":"56 1","pages":"96-102"},"PeriodicalIF":65.3000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLHPCAI4S51975.2020.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Nowadays, leveraging data augmentation methods on helping resolving scientific problems becomes prevailing. And many scientific problems benefit from data augmentation methods build with deep generative models. Yet due to the complexity of the scientific data, commonly used evaluation methods of generative models appear not so suitable for generated scientific data. In this paper, we explore how do we effectively evaluate data augmentation methods for scientific data generative models? To answer this question, we use one example of real world scientific problem to show how we evaluate the quality of the generated data from two domain specific deep generative models. We observe that most existing state-of-art evaluation metrics are incompetent. They either show completely contradicting results or provide inaccurate insight from real data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
你的科学数据生成模型有多好?
如今,利用数据增强方法来帮助解决科学问题变得普遍。许多科学问题都受益于基于深度生成模型的数据增强方法。然而,由于科学数据的复杂性,常用的生成模型评价方法似乎不太适合生成的科学数据。在本文中,我们探讨了如何有效地评估科学数据生成模型的数据增强方法?为了回答这个问题,我们使用一个现实世界的科学问题的例子来展示我们如何评估从两个特定领域的深度生成模型生成的数据的质量。我们观察到,大多数现有的最先进的评估指标是不合格的。它们要么显示出完全矛盾的结果,要么从真实数据中提供不准确的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Foundations and Trends in Machine Learning
Foundations and Trends in Machine Learning COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
108.50
自引率
0.00%
发文量
5
期刊介绍: Each issue of Foundations and Trends® in Machine Learning comprises a monograph of at least 50 pages written by research leaders in the field. We aim to publish monographs that provide an in-depth, self-contained treatment of topics where there have been significant new developments. Typically, this means that the monographs we publish will contain a significant level of mathematical detail (to describe the central methods and/or theory for the topic at hand), and will not eschew these details by simply pointing to existing references. Literature surveys and original research papers do not fall within these aims.
期刊最新文献
Model-based Reinforcement Learning: A Survey Probabilistic Learning Reinforcement Learning Support Vector Machine Advanced Clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1