首页 > 最新文献

Foundations and Trends in Machine Learning最新文献

英文 中文
Model-based Reinforcement Learning: A Survey 基于模型的强化学习:综述
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-01-01 DOI: 10.1561/2200000086
Thomas M. Moerland, Joost Broekens, Aske Plaat, Catholijn M. Jonker
Sequential decision making, commonly formalized as Markov Decision Process (MDP) optimization, is an important challenge in artificial intelligence. Two key approaches to this problem are reinforcement learning (RL) and planning. This monograph surveys an integration of both fields, better known as model-based reinforcement learning. Model-based RL has two main steps: dynamics model learning and planning-learning integration. In this comprehensive survey of the topic, the authors first cover dynamics model learning, including challenges such as dealing with stochasticity, uncertainty, partial observability, and temporal abstraction. They then present a systematic categorization of planning-learning integration, including aspects such as: where to start planning, what budgets to allocate to planning and real data collection, how to plan, and how to integrate planning in the learning and acting loop. In conclusion the authors discuss implicit model-based RL as an end-to-end alternative for model learning and planning, and cover the potential benefits of model-based RL. Along the way, the authors draw connections to several related RL fields, including hierarchical RL and transfer learning. This monograph contains a broad conceptual overview of the combination of planning and learning for Markov Decision Process optimization. It provides a clear and complete introduction to the topic for students and researchers alike.
顺序决策,通常形式化为马尔可夫决策过程(MDP)优化,是人工智能领域的一个重要挑战。解决这个问题的两个关键方法是强化学习(RL)和规划。这本专著调查了这两个领域的整合,更广为人知的是基于模型的强化学习。基于模型的强化学习主要有两个步骤:动态模型学习和计划学习集成。在这个主题的全面调查中,作者首先介绍了动态模型学习,包括处理随机性、不确定性、部分可观察性和时间抽象等挑战。然后,他们提出了计划-学习整合的系统分类,包括以下方面:从哪里开始计划,为计划和实际数据收集分配哪些预算,如何计划,以及如何将计划整合到学习和行动循环中。最后,作者讨论了隐式基于模型的强化学习作为模型学习和规划的端到端替代方案,并涵盖了基于模型的强化学习的潜在好处。在此过程中,作者将几个相关的强化学习领域联系起来,包括分层强化学习和迁移学习。这本专著包含了马尔可夫决策过程优化的规划和学习相结合的广泛概念概述。它为学生和研究人员提供了一个清晰而完整的主题介绍。
{"title":"Model-based Reinforcement Learning: A Survey","authors":"Thomas M. Moerland, Joost Broekens, Aske Plaat, Catholijn M. Jonker","doi":"10.1561/2200000086","DOIUrl":"https://doi.org/10.1561/2200000086","url":null,"abstract":"Sequential decision making, commonly formalized as Markov Decision Process (MDP) optimization, is an important challenge in artificial intelligence. Two key approaches to this problem are reinforcement learning (RL) and planning. This monograph surveys an integration of both fields, better known as model-based reinforcement learning. Model-based RL has two main steps: dynamics model learning and planning-learning integration. In this comprehensive survey of the topic, the authors first cover dynamics model learning, including challenges such as dealing with stochasticity, uncertainty, partial observability, and temporal abstraction. They then present a systematic categorization of planning-learning integration, including aspects such as: where to start planning, what budgets to allocate to planning and real data collection, how to plan, and how to integrate planning in the learning and acting loop. In conclusion the authors discuss implicit model-based RL as an end-to-end alternative for model learning and planning, and cover the potential benefits of model-based RL. Along the way, the authors draw connections to several related RL fields, including hierarchical RL and transfer learning. This monograph contains a broad conceptual overview of the combination of planning and learning for Markov Decision Process optimization. It provides a clear and complete introduction to the topic for students and researchers alike.","PeriodicalId":47667,"journal":{"name":"Foundations and Trends in Machine Learning","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135799442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 84
Probabilistic Learning 概率学习
IF 32.8 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2020-12-01 DOI: 10.1007/978-3-030-65900-4_6
T. Jo
{"title":"Probabilistic Learning","authors":"T. Jo","doi":"10.1007/978-3-030-65900-4_6","DOIUrl":"https://doi.org/10.1007/978-3-030-65900-4_6","url":null,"abstract":"","PeriodicalId":47667,"journal":{"name":"Foundations and Trends in Machine Learning","volume":"4 1","pages":""},"PeriodicalIF":32.8,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75335216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data Encoding 数据编码
IF 32.8 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2020-12-01 DOI: 10.1007/978-3-030-65900-4_3
T. Jo
{"title":"Data Encoding","authors":"T. Jo","doi":"10.1007/978-3-030-65900-4_3","DOIUrl":"https://doi.org/10.1007/978-3-030-65900-4_3","url":null,"abstract":"","PeriodicalId":47667,"journal":{"name":"Foundations and Trends in Machine Learning","volume":"1 1","pages":""},"PeriodicalIF":32.8,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88609756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Support Vector Machine 支持向量机
IF 32.8 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2020-12-01 DOI: 10.1007/978-3-030-65900-4_8
T. Jo
{"title":"Support Vector Machine","authors":"T. Jo","doi":"10.1007/978-3-030-65900-4_8","DOIUrl":"https://doi.org/10.1007/978-3-030-65900-4_8","url":null,"abstract":"","PeriodicalId":47667,"journal":{"name":"Foundations and Trends in Machine Learning","volume":"30 1","pages":""},"PeriodicalIF":32.8,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81512838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Numerical Vectors 数值向量
IF 32.8 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2020-12-01 DOI: 10.1007/978-3-030-65900-4_2
T. Jo
{"title":"Numerical Vectors","authors":"T. Jo","doi":"10.1007/978-3-030-65900-4_2","DOIUrl":"https://doi.org/10.1007/978-3-030-65900-4_2","url":null,"abstract":"","PeriodicalId":47667,"journal":{"name":"Foundations and Trends in Machine Learning","volume":"108 1","pages":""},"PeriodicalIF":32.8,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86992067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced Clustering 先进的集群
IF 32.8 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2020-12-01 DOI: 10.1007/978-3-030-65900-4_12
T. Jo
{"title":"Advanced Clustering","authors":"T. Jo","doi":"10.1007/978-3-030-65900-4_12","DOIUrl":"https://doi.org/10.1007/978-3-030-65900-4_12","url":null,"abstract":"","PeriodicalId":47667,"journal":{"name":"Foundations and Trends in Machine Learning","volume":"57 1","pages":""},"PeriodicalIF":32.8,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82258178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Temporal Learning 时间学习
IF 32.8 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2020-12-01 DOI: 10.1007/978-3-030-65900-4_15
T. Jo
{"title":"Temporal Learning","authors":"T. Jo","doi":"10.1007/978-3-030-65900-4_15","DOIUrl":"https://doi.org/10.1007/978-3-030-65900-4_15","url":null,"abstract":"","PeriodicalId":47667,"journal":{"name":"Foundations and Trends in Machine Learning","volume":"45 1","pages":""},"PeriodicalIF":32.8,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85906006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Semi-supervised Learning Semi-supervised学习
IF 32.8 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2020-12-01 DOI: 10.1007/978-3-030-65900-4_14
T. Jo
{"title":"Semi-supervised Learning","authors":"T. Jo","doi":"10.1007/978-3-030-65900-4_14","DOIUrl":"https://doi.org/10.1007/978-3-030-65900-4_14","url":null,"abstract":"","PeriodicalId":47667,"journal":{"name":"Foundations and Trends in Machine Learning","volume":"9 1","pages":""},"PeriodicalIF":32.8,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84571505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reinforcement Learning 强化学习
IF 32.8 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2020-12-01 DOI: 10.1007/978-3-030-65900-4_16
T. Jo
{"title":"Reinforcement Learning","authors":"T. Jo","doi":"10.1007/978-3-030-65900-4_16","DOIUrl":"https://doi.org/10.1007/978-3-030-65900-4_16","url":null,"abstract":"","PeriodicalId":47667,"journal":{"name":"Foundations and Trends in Machine Learning","volume":"364 1","pages":""},"PeriodicalIF":32.8,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80304699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
How Good Is Your Scientific Data Generative Model? 你的科学数据生成模型有多好?
IF 32.8 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2020-11-01 DOI: 10.1109/MLHPCAI4S51975.2020.00018
Yuxin Yang, Ben Gremillion, Xitong Zhang, Youzuo Lin, B. Wohlberg, Qiang Guan
Nowadays, leveraging data augmentation methods on helping resolving scientific problems becomes prevailing. And many scientific problems benefit from data augmentation methods build with deep generative models. Yet due to the complexity of the scientific data, commonly used evaluation methods of generative models appear not so suitable for generated scientific data. In this paper, we explore how do we effectively evaluate data augmentation methods for scientific data generative models? To answer this question, we use one example of real world scientific problem to show how we evaluate the quality of the generated data from two domain specific deep generative models. We observe that most existing state-of-art evaluation metrics are incompetent. They either show completely contradicting results or provide inaccurate insight from real data.
如今,利用数据增强方法来帮助解决科学问题变得普遍。许多科学问题都受益于基于深度生成模型的数据增强方法。然而,由于科学数据的复杂性,常用的生成模型评价方法似乎不太适合生成的科学数据。在本文中,我们探讨了如何有效地评估科学数据生成模型的数据增强方法?为了回答这个问题,我们使用一个现实世界的科学问题的例子来展示我们如何评估从两个特定领域的深度生成模型生成的数据的质量。我们观察到,大多数现有的最先进的评估指标是不合格的。它们要么显示出完全矛盾的结果,要么从真实数据中提供不准确的见解。
{"title":"How Good Is Your Scientific Data Generative Model?","authors":"Yuxin Yang, Ben Gremillion, Xitong Zhang, Youzuo Lin, B. Wohlberg, Qiang Guan","doi":"10.1109/MLHPCAI4S51975.2020.00018","DOIUrl":"https://doi.org/10.1109/MLHPCAI4S51975.2020.00018","url":null,"abstract":"Nowadays, leveraging data augmentation methods on helping resolving scientific problems becomes prevailing. And many scientific problems benefit from data augmentation methods build with deep generative models. Yet due to the complexity of the scientific data, commonly used evaluation methods of generative models appear not so suitable for generated scientific data. In this paper, we explore how do we effectively evaluate data augmentation methods for scientific data generative models? To answer this question, we use one example of real world scientific problem to show how we evaluate the quality of the generated data from two domain specific deep generative models. We observe that most existing state-of-art evaluation metrics are incompetent. They either show completely contradicting results or provide inaccurate insight from real data.","PeriodicalId":47667,"journal":{"name":"Foundations and Trends in Machine Learning","volume":"56 1","pages":"96-102"},"PeriodicalIF":32.8,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75362366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Foundations and Trends in Machine Learning
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1