Resistive switching of Ag/In2O3/Pt heterostructures for non volatile memory applications

B. V. Mistry, U. Joshi, R. Pinto
{"title":"Resistive switching of Ag/In2O3/Pt heterostructures for non volatile memory applications","authors":"B. V. Mistry, U. Joshi, R. Pinto","doi":"10.1063/1.4710218","DOIUrl":null,"url":null,"abstract":"Resistance switching properties of nanostructured In2O3 films grown on Pt bottom electrode have been investigated for non volatile memory applications. Ag/In2O3/Pt/Ti/SiO2/Si heterostructures were fabricated by pulsed laser deposition and e-beam evaporation techniques. Polycrystalline growth of oxides In2O3 was confirmed by grazing incidence X-ray diffraction, where as AFM show nanostructured growth with smooth surface morphology. Two terminal I-V characteristics showed reproducible hysteresis with a sharp resistive switching, suggesting two distinct resistance states in the film and bipolar type switching. Typical resistance switching ratio (Ron/Roff) of the order of 72% has been estimated at room temperature. The mechanism of the observed resistance switching is analyzed by space charge limited current (SCLS) and the Schottky-like barrier formation at Ag/In2O3 interface in the off states, where as, Pool-Frankel type conduction mechanism seems valid in the on state.","PeriodicalId":16850,"journal":{"name":"Journal of Physics C: Solid State Physics","volume":"50 1","pages":"745-746"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics C: Solid State Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.4710218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Resistance switching properties of nanostructured In2O3 films grown on Pt bottom electrode have been investigated for non volatile memory applications. Ag/In2O3/Pt/Ti/SiO2/Si heterostructures were fabricated by pulsed laser deposition and e-beam evaporation techniques. Polycrystalline growth of oxides In2O3 was confirmed by grazing incidence X-ray diffraction, where as AFM show nanostructured growth with smooth surface morphology. Two terminal I-V characteristics showed reproducible hysteresis with a sharp resistive switching, suggesting two distinct resistance states in the film and bipolar type switching. Typical resistance switching ratio (Ron/Roff) of the order of 72% has been estimated at room temperature. The mechanism of the observed resistance switching is analyzed by space charge limited current (SCLS) and the Schottky-like barrier formation at Ag/In2O3 interface in the off states, where as, Pool-Frankel type conduction mechanism seems valid in the on state.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于非易失性存储器的Ag/In2O3/Pt异质结构的电阻开关
研究了在Pt底电极上生长的纳米结构In2O3薄膜在非易失性存储器中的电阻开关特性。采用脉冲激光沉积和电子束蒸发技术制备了Ag/In2O3/Pt/Ti/SiO2/Si异质结构。掠射x射线衍射证实了氧化物In2O3的多晶生长,其中AFM显示出表面光滑的纳米结构生长。两个终端的I-V特性表现出可重复的迟滞和尖锐的电阻开关,表明在薄膜和双极型开关中存在两种不同的电阻状态。在室温下,典型的电阻开关比(Ron/Roff)约为72%。利用空间电荷限制电流(SCLS)和关闭态Ag/In2O3界面上Schottky-like势垒的形成分析了所观察到的电阻开关机制,而在打开态,池-弗兰克尔型传导机制似乎是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chapter One - Collective Effects in Assemblies of Magnetic Nanaparticles Investigation of dielectric properties of La0.33NbO3 ceramics Experimental investigation on hydrogen storage in polymer based nanocomposite 3D dendritic α-Fe2O3 nano-architectures: Synthesis and its application on electrochemical non-enzymatic H2O2 sensing Electronic properties of excess Cr at Fe site in FeCr0.02Se alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1