Ilia V. Roisman , Mohammad Abboud , Philipp Brockmann , Fiona Berner , Rüdiger Berger , Pauline Rothmann-Brumm , Hans Martin Sauer , Edgar Dörsam , Jeanette Hussong
{"title":"Forced flows in liquid bridges","authors":"Ilia V. Roisman , Mohammad Abboud , Philipp Brockmann , Fiona Berner , Rüdiger Berger , Pauline Rothmann-Brumm , Hans Martin Sauer , Edgar Dörsam , Jeanette Hussong","doi":"10.1016/j.cocis.2023.101738","DOIUrl":null,"url":null,"abstract":"<div><p>Wetting of solid surfaces by liquid deposition, contact dispensing, drop transfer, collision of wet particles, or during coating processes is often accompanied by the formation of liquid bridges between two or more solid substrates. They appear in many applications, like material science, microfluidics, biomedical, chemical, or aerospace engineering, and different fields of physics. In this study, the flows accompanying lifting of a Hele-Shaw cell, stretching or shearing of a liquid bridge, as well as liquid bridge flows observed during printing processes and other important applications, are briefly reviewed. Such flows are governed by surface tension, inertia, stresses associated with the liquid rheology, and forces caused by the substrate's wettability. Instabilities of liquid bridges lead to the formation of finger-like structures on the substrate or the appearance of cavities at the wetted region of the wall. The time required for jet pinch-off also determines the residual liquid volume on both solid bodies.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359029423000638/pdfft?md5=5f399cdb22de7c2d0f7f0ca801cb80e5&pid=1-s2.0-S1359029423000638-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029423000638","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Wetting of solid surfaces by liquid deposition, contact dispensing, drop transfer, collision of wet particles, or during coating processes is often accompanied by the formation of liquid bridges between two or more solid substrates. They appear in many applications, like material science, microfluidics, biomedical, chemical, or aerospace engineering, and different fields of physics. In this study, the flows accompanying lifting of a Hele-Shaw cell, stretching or shearing of a liquid bridge, as well as liquid bridge flows observed during printing processes and other important applications, are briefly reviewed. Such flows are governed by surface tension, inertia, stresses associated with the liquid rheology, and forces caused by the substrate's wettability. Instabilities of liquid bridges lead to the formation of finger-like structures on the substrate or the appearance of cavities at the wetted region of the wall. The time required for jet pinch-off also determines the residual liquid volume on both solid bodies.
期刊介绍:
Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications.
Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments.
Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.