Long Short-Term Memory (LSTM) Algorithm Based Prediction of Stock Market Exchange

Karunakar Pothuganti
{"title":"Long Short-Term Memory (LSTM) Algorithm Based Prediction of Stock Market Exchange","authors":"Karunakar Pothuganti","doi":"10.2139/ssrn.3770184","DOIUrl":null,"url":null,"abstract":"The speciality of determining stock prices has been a troublesome task for many researchers and examiners. Indeed, financial specialists are profoundly intrigued by the examination region of stock value prediction. For decent and useful speculation, numerous speculators are sharp in knowing the stock market's future circumstance. Tremendous and powerful prediction frameworks for stock market help dealers, speculators, and experts give vital data like the stock market's future heading. This work presents a recurrent neural network (RNN) and Long Short-Term Memory (LSTM) way to deal with anticipated stock market files.","PeriodicalId":11410,"journal":{"name":"Econometric Modeling: Capital Markets - Risk eJournal","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Risk eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3770184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The speciality of determining stock prices has been a troublesome task for many researchers and examiners. Indeed, financial specialists are profoundly intrigued by the examination region of stock value prediction. For decent and useful speculation, numerous speculators are sharp in knowing the stock market's future circumstance. Tremendous and powerful prediction frameworks for stock market help dealers, speculators, and experts give vital data like the stock market's future heading. This work presents a recurrent neural network (RNN) and Long Short-Term Memory (LSTM) way to deal with anticipated stock market files.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于长短期记忆(LSTM)算法的股市交易预测
对许多研究人员和检验人员来说,确定股票价格一直是一项棘手的任务。事实上,金融专家对股票价值预测的研究领域非常感兴趣。为了进行体面而有用的投机,许多投机者都能敏锐地了解股市的未来情况。巨大而强大的股票市场预测框架帮助交易商,投机者和专家提供重要的数据,如股票市场的未来走向。本文提出了一种递归神经网络(RNN)和长短期记忆(LSTM)相结合的方法来处理预期的股票市场文件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corporate Loan Spreads and Economic Activity The Effect of Internal and External Factors on Credit Risk : A Study on Shawbrook Bank Limited in United Kingdom Systemic Risk in Interbank Networks: Disentangling Balance Sheets and Network Effects Credit & Lending Decisions Assessment Report on Ramsay Health Care Identifying the Information Polarities in Credit Risk Transfer Instruments; A Case for Regulatory Product Intervention and Product Liability Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1