INRUSH CURRENT DETECTION USING WAVELET TRANSFORM AND ARTIFICIAL NEURAL NETWORK

Prachi R. Gondane, Rukhsar M. Sheikh, Kajol A. Chawre, Vivian V. Wasnik, A. Badar, M. Hasan
{"title":"INRUSH CURRENT DETECTION USING WAVELET TRANSFORM AND ARTIFICIAL NEURAL NETWORK","authors":"Prachi R. Gondane, Rukhsar M. Sheikh, Kajol A. Chawre, Vivian V. Wasnik, A. Badar, M. Hasan","doi":"10.1109/ICCMC.2018.8487832","DOIUrl":null,"url":null,"abstract":"In this paper, wavelet transform and artificial neural network (ANN) is used for processing current waveforms and distinguish between inrush current, fault and normal situation. Wavelet transform is used to analyze and detect various frequency components present in the signal. ANN is a tool which is utilized for classification of data based on specific properties. Different types of power system combinations are used in simulation. Fault detection is an important part for safety of electric power system. For the synthesis of signals and the classification of current conditions, WT and ANN are used in collectively.","PeriodicalId":6604,"journal":{"name":"2018 Second International Conference on Computing Methodologies and Communication (ICCMC)","volume":"88 1","pages":"866-868"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second International Conference on Computing Methodologies and Communication (ICCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMC.2018.8487832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, wavelet transform and artificial neural network (ANN) is used for processing current waveforms and distinguish between inrush current, fault and normal situation. Wavelet transform is used to analyze and detect various frequency components present in the signal. ANN is a tool which is utilized for classification of data based on specific properties. Different types of power system combinations are used in simulation. Fault detection is an important part for safety of electric power system. For the synthesis of signals and the classification of current conditions, WT and ANN are used in collectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小波变换和人工神经网络的浪涌电流检测
本文采用小波变换和人工神经网络(ANN)对电流波形进行处理,区分涌流、故障和正常情况。小波变换用于分析和检测信号中存在的各种频率分量。人工神经网络是一种基于特定属性对数据进行分类的工具。仿真中使用了不同类型的电力系统组合。故障检测是电力系统安全运行的重要组成部分。对于信号的合成和当前状态的分类,将小波变换和人工神经网络共同用于。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling of Audio Effects for Vocal and Music Synthesis in Real Time Deep Learning Framework for Diabetic Retinopathy Diagnosis A Comprehensive Survey on Internet of Things Based Healthcare Services and its Applications Exploring Pain Insensitivity Inducing Gene ZFHX2 by using Deep Convolutional Neural Network Atmospheric Weather Prediction Using various machine learning Techniques: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1