{"title":"Plant Disease Detection using Vision Transformers on Multispectral Natural Environment Images","authors":"Malithi De Silva, Dane Brown","doi":"10.1109/icABCD59051.2023.10220517","DOIUrl":null,"url":null,"abstract":"Enhancing agricultural practices has become essential in mitigating global hunger. Over the years, significant technological advancements have been introduced to improve the quality and quantity of harvests by effectively managing weeds, pests, and diseases. Many studies have focused on identifying plant diseases, as this information aids in making informed decisions about applying fungicides and fertilizers. Advanced systems often employ a combination of image processing and deep learning techniques to identify diseases based on visible symptoms. However, these systems typically rely on pre-existing datasets or images captured in controlled environments. This study showcases the efficacy of utilizing multispectral images captured in visible and Near Infrared (NIR) ranges for identifying plant diseases in real-world environmental conditions. The collected datasets were classified using popular Vision Transformer (ViT) models, including ViT- S16, ViT-BI6, ViT-LI6 and ViT-B32. The results showed impressive training and test accuracies for all the data collected using diverse Kolari vision lenses with 93.71 % and 90.02 %, respectively. This work highlights the potential of utilizing advanced imaging techniques for accurate and reliable plant disease identification in practical field conditions.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/icABCD59051.2023.10220517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2
Abstract
Enhancing agricultural practices has become essential in mitigating global hunger. Over the years, significant technological advancements have been introduced to improve the quality and quantity of harvests by effectively managing weeds, pests, and diseases. Many studies have focused on identifying plant diseases, as this information aids in making informed decisions about applying fungicides and fertilizers. Advanced systems often employ a combination of image processing and deep learning techniques to identify diseases based on visible symptoms. However, these systems typically rely on pre-existing datasets or images captured in controlled environments. This study showcases the efficacy of utilizing multispectral images captured in visible and Near Infrared (NIR) ranges for identifying plant diseases in real-world environmental conditions. The collected datasets were classified using popular Vision Transformer (ViT) models, including ViT- S16, ViT-BI6, ViT-LI6 and ViT-B32. The results showed impressive training and test accuracies for all the data collected using diverse Kolari vision lenses with 93.71 % and 90.02 %, respectively. This work highlights the potential of utilizing advanced imaging techniques for accurate and reliable plant disease identification in practical field conditions.