Model-Based Optimization of Mannitol Production by Using a Sequence of Batch Reactors for a Coupled Bi-Enzymatic Process—A Dynamic Approach

G. Maria, Ioana Mirela Peptănaru
{"title":"Model-Based Optimization of Mannitol Production by Using a Sequence of Batch Reactors for a Coupled Bi-Enzymatic Process—A Dynamic Approach","authors":"G. Maria, Ioana Mirela Peptănaru","doi":"10.3390/dynamics1010008","DOIUrl":null,"url":null,"abstract":"Multi-enzymatic reactions can successfully replace complex chemical syntheses, using milder reaction conditions, and generating less waste. The present model-based analysis compares the performances of several optimally operated Batch Reactors (BR) with those of an optimally operated serial Sequence of BRs (SeqBR). In multi-enzymatic systems, SeqBR could be more advantageous and flexible, allowing the optimization of costly enzymes amounts used in each BR in the series. Exemplification was made for the bi-enzymatic reduction of D-fructose to mannitol by using MDH (mannitol dehydrogenase) and the NADH cofactor, with the in situ continuous regeneration of NADH at the expense of formate degradation in the presence of FDH (formate dehydrogenase). For such coupled enzymatic systems, the model-based engineering evaluations are difficult tasks, because they must account for the common species’ initial levels, their interaction, and their dynamics. The determination of optimal operating modes of sole BR or of a SeqBR turns into a multi-objective optimization problem with multiple constraints to be solved for every particular system. The study presents multiple elements of novelty: (i) the proof of higher performances of an optimal SeqBR (including N-BRs) compared to a sole optimal BR operated for N-number of runs and (ii) the effect of using a multi-objective optimization criteria on SeqBR adjustable dynamics.","PeriodicalId":80276,"journal":{"name":"Dynamics (Pembroke, Ont.)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics (Pembroke, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dynamics1010008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Multi-enzymatic reactions can successfully replace complex chemical syntheses, using milder reaction conditions, and generating less waste. The present model-based analysis compares the performances of several optimally operated Batch Reactors (BR) with those of an optimally operated serial Sequence of BRs (SeqBR). In multi-enzymatic systems, SeqBR could be more advantageous and flexible, allowing the optimization of costly enzymes amounts used in each BR in the series. Exemplification was made for the bi-enzymatic reduction of D-fructose to mannitol by using MDH (mannitol dehydrogenase) and the NADH cofactor, with the in situ continuous regeneration of NADH at the expense of formate degradation in the presence of FDH (formate dehydrogenase). For such coupled enzymatic systems, the model-based engineering evaluations are difficult tasks, because they must account for the common species’ initial levels, their interaction, and their dynamics. The determination of optimal operating modes of sole BR or of a SeqBR turns into a multi-objective optimization problem with multiple constraints to be solved for every particular system. The study presents multiple elements of novelty: (i) the proof of higher performances of an optimal SeqBR (including N-BRs) compared to a sole optimal BR operated for N-number of runs and (ii) the effect of using a multi-objective optimization criteria on SeqBR adjustable dynamics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模型的双酶耦合间歇式反应器生产甘露醇的优化研究
多酶反应可以成功地取代复杂的化学合成,使用更温和的反应条件,产生更少的废物。本文基于模型的分析比较了分批式反应器(BR)和分批式反应器(SeqBR)的性能。在多酶系统中,SeqBR可能更具优势和灵活性,可以优化系列中每个BR中使用的昂贵酶的量。举例说明了利用MDH(甘露醇脱氢酶)和NADH辅助因子将d -果糖双酶还原为甘露醇,在FDH(甲酸脱氢酶)存在下,NADH的原位连续再生以牺牲甲酸降解为代价。对于这样的耦合酶系统,基于模型的工程评估是一项困难的任务,因为它们必须考虑到共同物种的初始水平、它们的相互作用和它们的动力学。单个BR或SeqBR的最佳运行模式的确定变成了一个多目标优化问题,每个特定系统都需要解决多个约束。该研究提出了多个新颖性要素:(i)与运行n次的唯一最优BR相比,最优SeqBR(包括n -BR)的性能更高;(ii)使用多目标优化标准对SeqBR可调动态的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring Transition from Stability to Chaos through Random Matrices Robust Global Trends during Pandemics: Analysing the Interplay of Biological and Social Processes Unveiling Dynamical Symmetries in 2D Chaotic Iterative Maps with Ordinal-Patterns-Based Complexity Quantifiers Thermal Hydraulics Simulation of a Water Spray System for a Cooling Fluid Catalytic Cracking (FCC) Regenerator Investigation of Jamming Phenomenon in a Direct Reduction Furnace Pellet Feed System Using the Discrete Element Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1