{"title":"A subspace filter supporting the discovery of small clusters in very noisy datasets","authors":"F. Höppner","doi":"10.1145/2618243.2618260","DOIUrl":null,"url":null,"abstract":"Feature selection becomes crucial when exploring high-dimensional datasets via clustering, because it is unlikely that the data groups jointly in all dimensions but clustering algorithms treat all attributes equally. A new subspace filter approach is presented that is capable of coping with the difficult situation of finding small clusters embedded in a very noisy environment (more noise than clustering data), which is not mislead by dense, high-dimensional spots caused by density fluctuations of single attributes. Experimental evaluation on artificial and real datasets demonstrate good performance and high efficiency.","PeriodicalId":74773,"journal":{"name":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","volume":"299 1","pages":"14:1-14:12"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2618243.2618260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Feature selection becomes crucial when exploring high-dimensional datasets via clustering, because it is unlikely that the data groups jointly in all dimensions but clustering algorithms treat all attributes equally. A new subspace filter approach is presented that is capable of coping with the difficult situation of finding small clusters embedded in a very noisy environment (more noise than clustering data), which is not mislead by dense, high-dimensional spots caused by density fluctuations of single attributes. Experimental evaluation on artificial and real datasets demonstrate good performance and high efficiency.