An almost-linear time algorithm for uniform random spanning tree generation

Aaron Schild
{"title":"An almost-linear time algorithm for uniform random spanning tree generation","authors":"Aaron Schild","doi":"10.1145/3188745.3188852","DOIUrl":null,"url":null,"abstract":"We give an m1+o(1)βo(1)-time algorithm for generating uniformly random spanning trees in weighted graphs with max-to-min weight ratio β. In the process, we illustrate how fundamental tradeoffs in graph partitioning can be overcome by eliminating vertices from a graph using Schur complements of the associated Laplacian matrix. Our starting point is the Aldous-Broder algorithm, which samples a random spanning tree using a random walk. As in prior work, we use fast Laplacian linear system solvers to shortcut the random walk from a vertex v to the boundary of a set of vertices assigned to v called a “shortcutter.” We depart from prior work by introducing a new way of employing Laplacian solvers to shortcut the walk. To bound the amount of shortcutting work, we show that most random walk steps occur far away from an unvisited vertex. We apply this observation by charging uses of a shortcutter S to random walk steps in the Schur complement obtained by eliminating all vertices in S that are not assigned to it.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

We give an m1+o(1)βo(1)-time algorithm for generating uniformly random spanning trees in weighted graphs with max-to-min weight ratio β. In the process, we illustrate how fundamental tradeoffs in graph partitioning can be overcome by eliminating vertices from a graph using Schur complements of the associated Laplacian matrix. Our starting point is the Aldous-Broder algorithm, which samples a random spanning tree using a random walk. As in prior work, we use fast Laplacian linear system solvers to shortcut the random walk from a vertex v to the boundary of a set of vertices assigned to v called a “shortcutter.” We depart from prior work by introducing a new way of employing Laplacian solvers to shortcut the walk. To bound the amount of shortcutting work, we show that most random walk steps occur far away from an unvisited vertex. We apply this observation by charging uses of a shortcutter S to random walk steps in the Schur complement obtained by eliminating all vertices in S that are not assigned to it.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
均匀随机生成树的近似线性时间算法
我们给出了一个m1+o(1)βo(1)时间算法,用于生成最大最小权比为β的加权图中的一致随机生成树。在此过程中,我们说明了如何通过使用相关拉普拉斯矩阵的Schur补来消除图中的顶点来克服图划分中的基本权衡。我们的起点是Aldous-Broder算法,该算法使用随机游走对随机生成树进行采样。与之前的工作一样,我们使用快速拉普拉斯线性系统求解器来缩短从顶点v到分配给v的一组顶点的边界的随机行走,称为“shortcut”。我们从先前的工作出发,引入了一种新的方法,使用拉普拉斯解算来缩短步行。为了限制抄近路的工作量,我们展示了大多数随机漫步步骤发生在远离未访问顶点的地方。我们通过使用快捷方式S对Schur补中的随机漫步步骤进行应用,该补是通过消除S中未分配给它的所有顶点而获得的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-dependent hashing via nonlinear spectral gaps Interactive compression to external information The query complexity of graph isomorphism: bypassing distribution testing lower bounds Collusion resistant traitor tracing from learning with errors Explicit binary tree codes with polylogarithmic size alphabet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1