The query complexity of graph isomorphism: bypassing distribution testing lower bounds

Krzysztof Onak, Xiaorui Sun
{"title":"The query complexity of graph isomorphism: bypassing distribution testing lower bounds","authors":"Krzysztof Onak, Xiaorui Sun","doi":"10.1145/3188745.3188952","DOIUrl":null,"url":null,"abstract":"We study the query complexity of graph isomorphism in the property testing model for dense graphs. We give an algorithm that makes n1+o(1) queries, improving on the previous best bound of Õ(n5/4). Since the problem is known to require Ω(n) queries, our algorithm is optimal up to a subpolynomial factor. While trying to extend a known connection to distribution testing, discovered by Fischer and Matsliah (SICOMP 2008), one encounters a natural obstacle presented by sampling lower bounds such as the Ω(n2/3)-sample lower bound for distribution closeness testing (Valiant, SICOMP 2011). In the context of graph isomorphism testing, these bounds lead to an n1+Ω(1) barrier for Fischer and Matsliah’s approach. We circumvent this and other limitations by exploiting a geometric representation of the connectivity of vertices. An approximate representation of similarities between vertices can be learned with a near-linear number of queries and allows relaxed versions of sampling and distribution testing problems to be solved more efficiently.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We study the query complexity of graph isomorphism in the property testing model for dense graphs. We give an algorithm that makes n1+o(1) queries, improving on the previous best bound of Õ(n5/4). Since the problem is known to require Ω(n) queries, our algorithm is optimal up to a subpolynomial factor. While trying to extend a known connection to distribution testing, discovered by Fischer and Matsliah (SICOMP 2008), one encounters a natural obstacle presented by sampling lower bounds such as the Ω(n2/3)-sample lower bound for distribution closeness testing (Valiant, SICOMP 2011). In the context of graph isomorphism testing, these bounds lead to an n1+Ω(1) barrier for Fischer and Matsliah’s approach. We circumvent this and other limitations by exploiting a geometric representation of the connectivity of vertices. An approximate representation of similarities between vertices can be learned with a near-linear number of queries and allows relaxed versions of sampling and distribution testing problems to be solved more efficiently.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图同构的查询复杂度:绕过分布测试下界
研究了密集图属性检验模型中图同构的查询复杂度问题。我们给出了一个算法,使n1+o(1)个查询,改进了先前的最佳界Õ(n5/4)。由于已知问题需要Ω(n)个查询,因此我们的算法在次多项式因子范围内是最优的。当试图将Fischer和Matsliah (SICOMP 2008)发现的已知连接扩展到分布测试时,人们会遇到一个自然障碍,即采样下界,例如分布紧密性测试的Ω(n2/3)样本下界(Valiant, SICOMP 2011)。在图同构检验的背景下,这些界限导致Fischer和Matsliah的方法存在n1+Ω(1)障碍。我们通过利用顶点连通性的几何表示来规避这个限制和其他限制。顶点之间相似性的近似表示可以通过近似线性的查询次数来学习,并允许更有效地解决抽样和分布测试问题的宽松版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-dependent hashing via nonlinear spectral gaps Interactive compression to external information The query complexity of graph isomorphism: bypassing distribution testing lower bounds Collusion resistant traitor tracing from learning with errors Explicit binary tree codes with polylogarithmic size alphabet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1