Urdu Sentiment Analysis Using Deep Attention-based Technique

Q4 Environmental Science Iranian Journal of Botany Pub Date : 2022-06-16 DOI:10.33897/fujeas.v3i1.564
Rashid Amin
{"title":"Urdu Sentiment Analysis Using Deep Attention-based Technique","authors":"Rashid Amin","doi":"10.33897/fujeas.v3i1.564","DOIUrl":null,"url":null,"abstract":"Sentiment analysis (SA) is a process that aims to classify text into positive, negative, or neutral categories. It has recently gained the research community's attention because of the abundance of opinion data to be processed for better understanding and decision-making. Deep learning techniques have recently shown tremendous performance, with a high tendency to reveal the underlying semantic meaning of text inputs. Since deep learning techniques are seen as black boxes, their effectiveness comes in the form of interpretability. The major goal of this article is to create an Urdu SA model that can comprehend review semantics without the need for language resources. The proposed model is tested on reviews to extract significant words using various scenarios and architectures. By emphasizing the most informative terms to the class label, the results demonstrated the suggested model's capacity to interpret a given review. Furthermore, the suggested models provide a visualization option for an intelligible explanation of the result. The impact of using transfer learning on the problem of Urdu SA is also investigated in this article.","PeriodicalId":36255,"journal":{"name":"Iranian Journal of Botany","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Botany","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33897/fujeas.v3i1.564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1

Abstract

Sentiment analysis (SA) is a process that aims to classify text into positive, negative, or neutral categories. It has recently gained the research community's attention because of the abundance of opinion data to be processed for better understanding and decision-making. Deep learning techniques have recently shown tremendous performance, with a high tendency to reveal the underlying semantic meaning of text inputs. Since deep learning techniques are seen as black boxes, their effectiveness comes in the form of interpretability. The major goal of this article is to create an Urdu SA model that can comprehend review semantics without the need for language resources. The proposed model is tested on reviews to extract significant words using various scenarios and architectures. By emphasizing the most informative terms to the class label, the results demonstrated the suggested model's capacity to interpret a given review. Furthermore, the suggested models provide a visualization option for an intelligible explanation of the result. The impact of using transfer learning on the problem of Urdu SA is also investigated in this article.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度注意技术的乌尔都语情感分析
情感分析(SA)是一个旨在将文本分为积极、消极或中性类别的过程。它最近引起了研究界的注意,因为有大量的意见数据需要处理,以便更好地理解和决策。深度学习技术在揭示文本输入的潜在语义方面表现得非常出色。由于深度学习技术被视为黑盒子,它们的有效性以可解释性的形式体现出来。本文的主要目标是创建一个Urdu SA模型,该模型可以在不需要语言资源的情况下理解复习语义。该模型在评论上进行了测试,以使用不同的场景和架构提取重要的单词。通过强调类标签中最有信息的术语,结果证明了建议的模型解释给定评论的能力。此外,建议的模型为结果的可理解解释提供了可视化选项。本文还探讨了迁移学习对乌尔都语SA问题的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Iranian Journal of Botany
Iranian Journal of Botany Environmental Science-Ecology
CiteScore
0.80
自引率
0.00%
发文量
0
期刊最新文献
A Comparative Analysis of Fruits and Vegetables Quality Using AI-Assisted Technologies: A review Multiple eye disease detection using deep learning Behavioral Authentication for Smartphones backed by Something you Process Country level Social Aggression using Computational Modelling Heart Diseases Prediction and Diagnosis using Supervised Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1