Multiple eye disease detection using deep learning

Q4 Environmental Science Iranian Journal of Botany Pub Date : 2023-01-10 DOI:10.33897/fujeas.v3i2.689
Rashid Amin, Adeel Ahmed, Syed Shabih Ul Hasan, Habib Akbar
{"title":"Multiple eye disease detection using deep learning","authors":"Rashid Amin, Adeel Ahmed, Syed Shabih Ul Hasan, Habib Akbar","doi":"10.33897/fujeas.v3i2.689","DOIUrl":null,"url":null,"abstract":"Human eyes are vulnerable to several abnormalities because of trauma, aging and disease like diabetes. The main factors of blindness around the world are glaucoma, cataract, macular degeneration and diabetic retinopathy etc. These eye diseases need to be detected and diagnosed timely with appropriate treatment for the solution of this problem. Multiple eye disease detection by analyzing various medical images can provide a timely diagnosis of eye diseases. The steps that are involved in multiple eye disease detection using deep learning are the acquisition of images, region of interest extraction, extraction of features and classification or detection of a particular disease. In this paper, diseases like uveitis, glaucoma, crossed eyes, bulging eyes and cataracts have been detected using deep learning models like Resnet and vgg16 model. We have obtained 92% accuracy using Resnet50 and 79% accuracy using the vgg16 model.","PeriodicalId":36255,"journal":{"name":"Iranian Journal of Botany","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Botany","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33897/fujeas.v3i2.689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Human eyes are vulnerable to several abnormalities because of trauma, aging and disease like diabetes. The main factors of blindness around the world are glaucoma, cataract, macular degeneration and diabetic retinopathy etc. These eye diseases need to be detected and diagnosed timely with appropriate treatment for the solution of this problem. Multiple eye disease detection by analyzing various medical images can provide a timely diagnosis of eye diseases. The steps that are involved in multiple eye disease detection using deep learning are the acquisition of images, region of interest extraction, extraction of features and classification or detection of a particular disease. In this paper, diseases like uveitis, glaucoma, crossed eyes, bulging eyes and cataracts have been detected using deep learning models like Resnet and vgg16 model. We have obtained 92% accuracy using Resnet50 and 79% accuracy using the vgg16 model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用深度学习的多种眼病检测
由于创伤、衰老和糖尿病等疾病,人类的眼睛容易出现几种异常。世界范围内致盲的主要因素有青光眼、白内障、黄斑变性和糖尿病视网膜病变等。这些眼病需要及时发现和诊断,并进行适当的治疗,以解决这一问题。多种眼病检测通过对各种医学图像的分析,可以提供对眼病的及时诊断。使用深度学习进行多重眼病检测涉及的步骤是图像获取、感兴趣区域提取、特征提取以及特定疾病的分类或检测。本文使用Resnet、vgg16模型等深度学习模型检测葡萄膜炎、青光眼、斗鸡眼、眼鼓、白内障等疾病。我们使用Resnet50获得了92%的准确率,使用vgg16模型获得了79%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Iranian Journal of Botany
Iranian Journal of Botany Environmental Science-Ecology
CiteScore
0.80
自引率
0.00%
发文量
0
期刊最新文献
A Comparative Analysis of Fruits and Vegetables Quality Using AI-Assisted Technologies: A review Multiple eye disease detection using deep learning Behavioral Authentication for Smartphones backed by Something you Process Country level Social Aggression using Computational Modelling Heart Diseases Prediction and Diagnosis using Supervised Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1