Shrutilipi Bhattacharjee, Monidipa Das, S. Ghosh, S. Shekhar
{"title":"Prediction of meteorological parameters: an a-posteriori probabilistic semantic kriging approach","authors":"Shrutilipi Bhattacharjee, Monidipa Das, S. Ghosh, S. Shekhar","doi":"10.1145/2996913.2996968","DOIUrl":null,"url":null,"abstract":"Meteorological parameters are often considered as crucial factors for climatological pattern analysis. Predictions of these parameters have been studied extensively in the field of remote sensing and GIS. It is one of the most critical steps involved in most of the meteorological data mining process. Spatial interpolation is an efficient technique to yield minimal error in prediction. From existing literatures, it is evident that the land-use/land-cover (LULC) distribution of the terrain influences these parameters in a varying manner and it is important to model their behaviour for climatological analyses. However, this semantic LULC knowledge of the terrain is generally ignored in the prediction process of the meteorological parameters. Recently, we have proposed a new spatial interpolation technique, namely semantic kriging (SemK) [3,5,7], which considers the semantic LULC knowledge for land-atmospheric interaction modeling and incorporates it into the existing interpolation process for better accuracy. However, the a-priori correlation analysis of SemK ignores the effect of other nearby LULC classes on each other. This article presents a new variant of SemK, namely a-posterior probabilistic Bayesian SemK (BSemK), which extends the a-priori correlation analysis of SemK with a-posterior probabilistic analysis. The proposed approach provides more accurate estimation of the parameters. Experimentation with LST data advocates the efficacy of the proposed approach compared to the a-priori SemK and other existing interpolation techniques.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2996968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Meteorological parameters are often considered as crucial factors for climatological pattern analysis. Predictions of these parameters have been studied extensively in the field of remote sensing and GIS. It is one of the most critical steps involved in most of the meteorological data mining process. Spatial interpolation is an efficient technique to yield minimal error in prediction. From existing literatures, it is evident that the land-use/land-cover (LULC) distribution of the terrain influences these parameters in a varying manner and it is important to model their behaviour for climatological analyses. However, this semantic LULC knowledge of the terrain is generally ignored in the prediction process of the meteorological parameters. Recently, we have proposed a new spatial interpolation technique, namely semantic kriging (SemK) [3,5,7], which considers the semantic LULC knowledge for land-atmospheric interaction modeling and incorporates it into the existing interpolation process for better accuracy. However, the a-priori correlation analysis of SemK ignores the effect of other nearby LULC classes on each other. This article presents a new variant of SemK, namely a-posterior probabilistic Bayesian SemK (BSemK), which extends the a-priori correlation analysis of SemK with a-posterior probabilistic analysis. The proposed approach provides more accurate estimation of the parameters. Experimentation with LST data advocates the efficacy of the proposed approach compared to the a-priori SemK and other existing interpolation techniques.