Adaptation of the mathematical apparatus of the Markov chain theory for the probabilistic analysis of recurrent estimation of image inter-frame geometric deformations

G. Safina, A. Tashlinskii, M. Tsaryov
{"title":"Adaptation of the mathematical apparatus of the Markov chain theory for the probabilistic analysis of recurrent estimation of image inter-frame geometric deformations","authors":"G. Safina, A. Tashlinskii, M. Tsaryov","doi":"10.18287/1613-0073-2019-2391-103-108","DOIUrl":null,"url":null,"abstract":"The paper is devoted to the analysis of the possibilities of using Markov chains for analyzing the accuracy of stochastic gradient relay estimation of image geometric deformations. One of the ways to reduce computational costs is to discretize the domain of studied parameters. This approach allows to choose the dimension of transition probabilities matrix a priori. However, such a matrix has a rather complicated structure. It does not significantly reduce the number of computations. A modification of the transition probabilities matrix is proposed, it’s dimension does not depend on the dimension of estimated parameters vector. In this case, the obtained relations determine a recurrent algorithm for calculating the matrix at the estimation iterations. For the one-step transitions matrix, the calculated expressions for the probabilities of image deformation parameters estimates drift are given.","PeriodicalId":10486,"journal":{"name":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/1613-0073-2019-2391-103-108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper is devoted to the analysis of the possibilities of using Markov chains for analyzing the accuracy of stochastic gradient relay estimation of image geometric deformations. One of the ways to reduce computational costs is to discretize the domain of studied parameters. This approach allows to choose the dimension of transition probabilities matrix a priori. However, such a matrix has a rather complicated structure. It does not significantly reduce the number of computations. A modification of the transition probabilities matrix is proposed, it’s dimension does not depend on the dimension of estimated parameters vector. In this case, the obtained relations determine a recurrent algorithm for calculating the matrix at the estimation iterations. For the one-step transitions matrix, the calculated expressions for the probabilities of image deformation parameters estimates drift are given.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
马尔可夫链理论在图像帧间几何变形循环估计概率分析中的应用
本文分析了利用马尔可夫链分析图像几何变形随机梯度中继估计精度的可能性。减少计算量的方法之一是对所研究参数的域进行离散化。这种方法允许先验地选择转移概率矩阵的维数。然而,这种矩阵的结构相当复杂。它不会显著减少计算次数。提出了一种改进的转移概率矩阵,它的维数不依赖于估计参数向量的维数。在这种情况下,得到的关系决定了在估计迭代时计算矩阵的循环算法。对于一步过渡矩阵,给出了图像变形参数估计漂移概率的计算表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of optimal configurations of a convolutional neural network for the identification of objects in real-time Recognition of forest and shrub communities on the base of remotely sensed data supported by ground studies Selection of aggregated classifiers for the prediction of the state of technical objects Method for reconstructing the real coordinates of an object from its plane image Using Models of Parallel Specialized Processors to Solve the Problem of Signal Separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1