Convergence Time Analysis of Particle Swarm Optimization Based on Particle Interaction

Chao-Hong Chen, Ying-ping Chen
{"title":"Convergence Time Analysis of Particle Swarm Optimization Based on Particle Interaction","authors":"Chao-Hong Chen, Ying-ping Chen","doi":"10.1155/2011/204750","DOIUrl":null,"url":null,"abstract":"We analyze the convergence time of particle swarm optimization (PSO) on the facet of particle interaction. We firstly introduce a statistical interpretation of social-only PSO in order to capture the essence of particle interaction, which is one of the key mechanisms of PSO. We then use the statistical model to obtain theoretical results on the convergence time. Since the theoretical analysis is conducted on the social-only model of PSO, instead of on common models in practice, to verify the validity of our results, numerical experiments are executed on benchmark functions with a regular PSO program.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"52 1","pages":"204750:1-204750:7"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/204750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We analyze the convergence time of particle swarm optimization (PSO) on the facet of particle interaction. We firstly introduce a statistical interpretation of social-only PSO in order to capture the essence of particle interaction, which is one of the key mechanisms of PSO. We then use the statistical model to obtain theoretical results on the convergence time. Since the theoretical analysis is conducted on the social-only model of PSO, instead of on common models in practice, to verify the validity of our results, numerical experiments are executed on benchmark functions with a regular PSO program.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子相互作用的粒子群优化收敛时间分析
从粒子相互作用的角度分析了粒子群优化算法的收敛时间。为了捕捉粒子相互作用的本质,我们首先引入了纯社会粒子群的统计解释,粒子相互作用是粒子群的关键机制之一。然后利用统计模型得到了收敛时间的理论结果。由于理论分析是在PSO的社会模型上进行的,而不是在实践中常见的模型上进行的,为了验证结果的有效性,我们使用常规PSO程序对基准函数进行了数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
iWordNet: A New Approach to Cognitive Science and Artificial Intelligence Natural Language Processing and Fuzzy Tools for Business Processes in a Geolocation Context Method for Solving LASSO Problem Based on Multidimensional Weight Selection and Configuration of Sorption Isotherm Models in Soils Using Artificial Bees Guided by the Particle Swarm Weighted Constraint Satisfaction for Smart Home Automation and Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1