{"title":"A 14.4nW 122KHz dual-phase current-mode relaxation oscillator for near-zero-power sensors","authors":"Shanshan Dai, J. Rosenstein","doi":"10.1109/CICC.2015.7338396","DOIUrl":null,"url":null,"abstract":"This paper presents a novel ultra-low-power dual-phase current-mode relaxation oscillator, which produces a 122 kHz digital clock and has total power consumption of 14.4 nW at 0.6 V. Its frequency dependence is 327 ppm/°C over a temperature range of -20° C to 100° C, and its supply voltage coefficient is ±3.0%/V from 0.6 V to 1.8 V. The proposed oscillator is fabricated in 0.18 μm CMOS technology and occupies 0.03 mm2. At room temperature it achieves a figure of merit of 120 pW/kHz, making it one of the most efficient relaxation oscillators reported to date.","PeriodicalId":6665,"journal":{"name":"2015 IEEE Custom Integrated Circuits Conference (CICC)","volume":"10 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.2015.7338396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41
Abstract
This paper presents a novel ultra-low-power dual-phase current-mode relaxation oscillator, which produces a 122 kHz digital clock and has total power consumption of 14.4 nW at 0.6 V. Its frequency dependence is 327 ppm/°C over a temperature range of -20° C to 100° C, and its supply voltage coefficient is ±3.0%/V from 0.6 V to 1.8 V. The proposed oscillator is fabricated in 0.18 μm CMOS technology and occupies 0.03 mm2. At room temperature it achieves a figure of merit of 120 pW/kHz, making it one of the most efficient relaxation oscillators reported to date.