Constant approximation for k-median and k-means with outliers via iterative rounding

Ravishankar Krishnaswamy, Shi Li, Sai Sandeep
{"title":"Constant approximation for k-median and k-means with outliers via iterative rounding","authors":"Ravishankar Krishnaswamy, Shi Li, Sai Sandeep","doi":"10.1145/3188745.3188882","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new iterative rounding framework for many clustering problems. Using this, we obtain an (α1 + є ≤ 7.081 + є)-approximation algorithm for k-median with outliers, greatly improving upon the large implicit constant approximation ratio of Chen. For k-means with outliers, we give an (α2+є ≤ 53.002 + є)-approximation, which is the first O(1)-approximation for this problem. The iterative algorithm framework is very versatile; we show how it can be used to give α1- and (α1 + є)-approximation algorithms for matroid and knapsack median problems respectively, improving upon the previous best approximations ratios of 8 due to Swamy and 17.46 due to Byrka et al. The natural LP relaxation for the k-median/k-means with outliers problem has an unbounded integrality gap. In spite of this negative result, our iterative rounding framework shows that we can round an LP solution to an almost-integral solution of small cost, in which we have at most two fractionally open facilities. Thus, the LP integrality gap arises due to the gap between almost-integral and fully-integral solutions. Then, using a pre-processing procedure, we show how to convert an almost-integral solution to a fully-integral solution losing only a constant-factor in the approximation ratio. By further using a sparsification technique, the additive factor loss incurred by the conversion can be reduced to any є > 0.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"240 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"97","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 97

Abstract

In this paper, we present a new iterative rounding framework for many clustering problems. Using this, we obtain an (α1 + є ≤ 7.081 + є)-approximation algorithm for k-median with outliers, greatly improving upon the large implicit constant approximation ratio of Chen. For k-means with outliers, we give an (α2+є ≤ 53.002 + є)-approximation, which is the first O(1)-approximation for this problem. The iterative algorithm framework is very versatile; we show how it can be used to give α1- and (α1 + є)-approximation algorithms for matroid and knapsack median problems respectively, improving upon the previous best approximations ratios of 8 due to Swamy and 17.46 due to Byrka et al. The natural LP relaxation for the k-median/k-means with outliers problem has an unbounded integrality gap. In spite of this negative result, our iterative rounding framework shows that we can round an LP solution to an almost-integral solution of small cost, in which we have at most two fractionally open facilities. Thus, the LP integrality gap arises due to the gap between almost-integral and fully-integral solutions. Then, using a pre-processing procedure, we show how to convert an almost-integral solution to a fully-integral solution losing only a constant-factor in the approximation ratio. By further using a sparsification technique, the additive factor loss incurred by the conversion can be reduced to any є > 0.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过迭代舍入对具有异常值的k中值和k均值进行常数逼近
在本文中,我们提出了一个新的迭代舍入框架,用于许多聚类问题。在此基础上,我们得到了具有异常值的k-中位数的(α1 + k≤7.081 + k)近似算法,大大改进了Chen的大隐式常数近似比。对于带有异常值的k-means,我们给出了一个(α2+ tu≤53.002 + tu)-近似,这是该问题的第一个O(1)-近似。迭代算法框架是非常通用的;我们展示了如何使用它分别给出矩阵和背包中值问题的α1-和(α1 + -)-近似算法,改进了先前由Swamy和Byrka等人给出的最佳近似比率为8和17.46。带离群值的k-中值/k-均值问题的自然LP松弛具有无界的完整性缺口。尽管有这个负面的结果,我们的迭代舍入框架表明,我们可以将LP解舍入为一个小成本的几乎积分解,其中我们最多有两个部分开放的设施。因此,由于几乎整解和完全整解之间的差距,产生了LP完整性差距。然后,使用预处理程序,我们展示了如何将几乎积分解转换为完全积分解,仅损失近似比率中的常数因子。通过进一步使用稀疏化技术,转换引起的加性因子损失可以减小到任意> 0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-dependent hashing via nonlinear spectral gaps Interactive compression to external information The query complexity of graph isomorphism: bypassing distribution testing lower bounds Collusion resistant traitor tracing from learning with errors Explicit binary tree codes with polylogarithmic size alphabet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1