Discriminative training of spiking neural networks organised in columns for stream-based biometric authentication

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IET Biometrics Pub Date : 2022-10-03 DOI:10.1049/bme2.12099
Enrique Argones Rúa, Tim Van hamme, Davy Preuveneers, Wouter Joosen
{"title":"Discriminative training of spiking neural networks organised in columns for stream-based biometric authentication","authors":"Enrique Argones Rúa,&nbsp;Tim Van hamme,&nbsp;Davy Preuveneers,&nbsp;Wouter Joosen","doi":"10.1049/bme2.12099","DOIUrl":null,"url":null,"abstract":"<p>Stream-based biometric authentication using a novel approach based on spiking neural networks (SNNs) is addressed. SNNs have proven advantages regarding energy consumption and they are a perfect match with some proposed neuromorphic hardware chips, which can lead to a broader adoption of user device applications of artificial intelligence technologies. One of the challenges when using SNNs is the discriminative training of the network since it is not straightforward to apply the well-known error backpropagation (EBP), massively used in traditional artificial neural networks (ANNs). A network structure based on neuron columns is proposed, resembling cortical columns in the human cortex, and a new derivation of error backpropagation for the spiking neural networks that integrate the lateral inhibition in these structures. The potential of the proposed approach is tested in the task of inertial gait authentication, where gait is quantified as signals from Inertial Measurement Units (IMU), and the authors' approach to state-of-the-art ANNs is compared. In the experiments, SNNs provide competitive results, obtaining a difference of around 1% in half total error rate when compared to state-of-the-art ANNs in the context of IMU-based gait authentication.</p>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"11 5","pages":"485-497"},"PeriodicalIF":1.8000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12099","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Biometrics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bme2.12099","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Stream-based biometric authentication using a novel approach based on spiking neural networks (SNNs) is addressed. SNNs have proven advantages regarding energy consumption and they are a perfect match with some proposed neuromorphic hardware chips, which can lead to a broader adoption of user device applications of artificial intelligence technologies. One of the challenges when using SNNs is the discriminative training of the network since it is not straightforward to apply the well-known error backpropagation (EBP), massively used in traditional artificial neural networks (ANNs). A network structure based on neuron columns is proposed, resembling cortical columns in the human cortex, and a new derivation of error backpropagation for the spiking neural networks that integrate the lateral inhibition in these structures. The potential of the proposed approach is tested in the task of inertial gait authentication, where gait is quantified as signals from Inertial Measurement Units (IMU), and the authors' approach to state-of-the-art ANNs is compared. In the experiments, SNNs provide competitive results, obtaining a difference of around 1% in half total error rate when compared to state-of-the-art ANNs in the context of IMU-based gait authentication.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于基于流的生物识别认证的柱状脉冲神经网络的判别训练
提出了一种基于脉冲神经网络(snn)的基于流的生物特征认证方法。snn在能源消耗方面已经被证明具有优势,并且它们与一些提出的神经形态硬件芯片完美匹配,这可以导致更广泛地采用人工智能技术的用户设备应用。使用snn时面临的挑战之一是网络的判别训练,因为应用传统人工神经网络(ann)中大量使用的众所周知的误差反向传播(EBP)并不直接。提出了一种基于神经元柱的网络结构,类似于人类皮层的皮层柱,并提出了一种新的误差反向传播的推导方法,该方法集成了这些结构中的侧抑制。在惯性步态认证任务中测试了所提出方法的潜力,其中步态被量化为来自惯性测量单元(IMU)的信号,并比较了作者的最先进的人工神经网络方法。在实验中,snn提供了有竞争力的结果,在基于imu的步态认证背景下,与最先进的ann相比,snn在总错误率的一半中获得了约1%的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Biometrics
IET Biometrics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
0.00%
发文量
46
审稿时长
33 weeks
期刊介绍: The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding. The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies: Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.) Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches Soft biometrics and information fusion for identification, verification and trait prediction Human factors and the human-computer interface issues for biometric systems, exception handling strategies Template construction and template management, ageing factors and their impact on biometric systems Usability and user-oriented design, psychological and physiological principles and system integration Sensors and sensor technologies for biometric processing Database technologies to support biometric systems Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection Biometric cryptosystems, security and biometrics-linked encryption Links with forensic processing and cross-disciplinary commonalities Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated Applications and application-led considerations Position papers on technology or on the industrial context of biometric system development Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions Relevant ethical and social issues
期刊最新文献
A Multimodal Biometric Recognition Method Based on Federated Learning Deep and Shallow Feature Fusion in Feature Score Level for Palmprint Recognition Research on TCN Model Based on SSARF Feature Selection in the Field of Human Behavior Recognition A Finger Vein Recognition Algorithm Based on the Histogram of Variable Curvature Directional Binary Statistics A Survey on Automatic Face Recognition Using Side-View Face Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1